- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- + 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一个直角三角形的两条直角边分别为
、
,斜边为
.我国古代数学家赵爽用四个这样的直角三角形拼成了如图的正方形,
(1)探究活动:如图1,中间围成的小正方形的边长为 (用含有
、
的代数式表示);
(2)探究活动:如图1,用不同的方法表示这个大正方形的面积,并写出你发现的结论;

图1 图2
(3)新知运用:根据你所发现的结论完成下列问题.
①某个直角三角形的两条直角边
、
满足式子
,求它的斜边
的值;
②由①中结论,此三角形斜边
上的高为 .
③如图2,这个勾股树图形是由正方形和直角三角形组成的,若正方形
、
、
、
的面积分别为
,4,
,
.则最大的正方形
的边长是 .




(1)探究活动:如图1,中间围成的小正方形的边长为 (用含有


(2)探究活动:如图1,用不同的方法表示这个大正方形的面积,并写出你发现的结论;


图1 图2
(3)新知运用:根据你所发现的结论完成下列问题.
①某个直角三角形的两条直角边




②由①中结论,此三角形斜边

③如图2,这个勾股树图形是由正方形和直角三角形组成的,若正方形








如图是“赵爽弦图”,由4个全等的直角三角形拼成的图形,若大正方形的面积是13,小正方形的面积是1,设直角三角形较长直角边为a,较短直角边为b,则a+b的值是________;

“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,则小正方形的面积为_____ (用a、b表示代数式)

我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图
),图
由弦图变化得到,它是由作个全等的直角三角形拼接而成,记图中正方形
,正方形
,正方形
的面积分别为
、
、
,若
,则
的值是( )












A.5 | B.![]() | C.![]() | D.4 |
如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理. 已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为( )


A.5 | B.![]() | C.4 | D.3 |
如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A的边长为
,另外四个正方形中的数字8,x,10,y分别表示该正方形面积,则x与y的数量关系是___________.


如图是一株美丽的勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形,其中A、B、C、D的面积之和为16cm2,最大的正方形边长为_____ cm.
