刷题首页
题库
初中数学
题干
如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理. 已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为( )
A.5
B.
C.4
D.3
上一题
下一题
0.99难度 单选题 更新时间:2018-11-16 04:41:52
答案(点此获取答案解析)
同类题1
3世纪我国汉代的数学家赵爽在注解一部数学著作时,创作了一幅“弦图”,叫做“赵爽弦图”,并用数形结合的方法,给出了勾股定理的详细证明.这部中国古代数学著作是( )
A.《周髀算经》
B.《九章算术》
C.《孙子算经》
D.《海岛算经》
同类题2
直角三角形的两条直角边长分别为
cm和
cm,则这个直角三角形的周长为____ .
同类题3
如图是“赵爽弦图”,由4个全等的直角三角形拼成的图形,若大正方形的面积是13,小正方形的面积是1,设直角三角形较长直角边为a,较短直角边为b,则a+b的值是________;
同类题4
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)所示).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形
ABCD
,正方形
EFGH
,正方形
MNKT
的面积分别为
S
1
,
S
2
,
S
3
,若
EF
=4,则
S
1
+
S
2
+
S
3
的值是( )
A.32
B.38
C.48
D.80
同类题5
勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90
O
,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()
A.90
B.100
C.110
D.121
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
以弦图为背景的计算题