- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- + 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是 .

如图,把长为12cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,且∠FPH=90°,BF=3cm,求FH的长.

如图①是一个直角三角形纸片,∠C=90°,AB=13cm,BC=5cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD(如图②),则DC的长为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,Rt△ABC纸片的两直角边长分别为6和8,∠A=90°折叠△ABC,使B、C两点重合,折痕为DE,连接BE,则BE的长为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,将矩形ABCD(AB<AD)沿BD折叠后,点C落在点E处,且BE交AD于点F.
(1)若AB=4,BC=8,求DF的长;
(2)当DA平分∠EDB时,求
的值.
(1)若AB=4,BC=8,求DF的长;
(2)当DA平分∠EDB时,求


如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.
(1)当m=3时,点B的坐标为________,点E的坐标为________;
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(1)当m=3时,点B的坐标为________,点E的坐标为________;
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.

如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,求AP的长.

如图,Rt△ABC中,∠BAC=90°,AC=9,AB=12.按如图所示方式折叠,使点B、C重合,折痕为DE,连接AE.求AE与CD的长.

如图,Rt△ABC中,∠C=90°,D、E分别是边AB、AC的点,将△ABC沿DE折叠,使点A的对称点A′恰好落在BC的中点处.若AB=10,BC=6,则AE的长为_____ .
