- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形ABCD中,AB=10,BC=6,点E为CD边上一点。
(1)当AE平分∠BED时,求DE的长。
(2)你能把矩形ABCD沿某条直线剪一刀分成两块,再拼成一个菱形吗?如果能,在备用图中画出示意图,并计算菱形较长对角线的长。

(1)当AE平分∠BED时,求DE的长。
(2)你能把矩形ABCD沿某条直线剪一刀分成两块,再拼成一个菱形吗?如果能,在备用图中画出示意图,并计算菱形较长对角线的长。


如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N.则DM+CN的值为_______________.(用含a的代数式表示).

如图,长方形纸片ABCD中,AB=CD=6cm,BC=AD=10cm,点E在AB边上,将三角形沿C所直线折叠,使B落的B′处,则AE的长为______________. 

如图,将矩形纸片ABCD折叠,使边AD落在对角线BD上,折痕为DE,且A点落在对角线F处.若AD=3,CD=4,则AE的长为( )


A.![]() | B.1 | C.2 | D.![]() |
实践操作:在矩形ABCD中,AB=4,AD=3,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.
初步思考:
(1)若点P落在矩形ABCD的边AB上(如图①)
①当点P与点A重合时,∠DEF= °;当点E与点A重合时,∠DEF= °;
②当点E在AB上,点F在DC上时(如图②),
求证:四边形DEPF为菱形,并直接写出当AP=3.5时的菱形EPFD的边长.

深入探究
(2)若点P落在矩形ABCD的内部(如图③),且点E、F分别在AD、DC边上,请直接写出AP的最小值 .
拓展延伸
(3)若点F与点C重合,点E在AD上,线段BA与线段FP交于点M(如图④).在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.
初步思考:
(1)若点P落在矩形ABCD的边AB上(如图①)
①当点P与点A重合时,∠DEF= °;当点E与点A重合时,∠DEF= °;
②当点E在AB上,点F在DC上时(如图②),
求证:四边形DEPF为菱形,并直接写出当AP=3.5时的菱形EPFD的边长.

深入探究
(2)若点P落在矩形ABCD的内部(如图③),且点E、F分别在AD、DC边上,请直接写出AP的最小值 .
拓展延伸
(3)若点F与点C重合,点E在AD上,线段BA与线段FP交于点M(如图④).在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.

如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则AF的长为_____ .
