如图,等腰等形ABCD中,AD∥BC,AD=5,∠B=60°,BC=8,且AB∥DE,ΔDEC的周长是( )


A.3 | B.9 | C.15 | D.19 |
如图等腰△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=38°,则∠P的度数为( )


A.96° | B.138° | C.104° | D.106° |
如图,等腰三角形PEF中,PE=PF,点O在EF边上(异于点E,F),点Q是PO延长线上一点,若△EFQ为等腰三角形,则称点Q为△PEF的“同类点”.

(1)如图,BG平分∠MBN,过射线BM上的点A作AD∥BN,交射线BG于点D,点O为BD上一点,连接AO并延长交射线BN于点C,若∠BAD=100°,∠BCD=70°,求证:点C是△ABD的“同类点”;

(2)如图③,在5×5的正方形网格图上有一个△ABC,点A,B,C均在格点上,在给出的网格图上有一个格点D,使得点D为△ABC的“同类点”,则这样的点D共有__________个;

(3)凸四边形ABCD中,∠ABC=110°,DA=AB=BC,对角线AC,BD交于点O,且BD≠CD,若点C为△ABD的“同类点”,请直接写出满足条件的∠ADC的度数.

(1)如图,BG平分∠MBN,过射线BM上的点A作AD∥BN,交射线BG于点D,点O为BD上一点,连接AO并延长交射线BN于点C,若∠BAD=100°,∠BCD=70°,求证:点C是△ABD的“同类点”;

(2)如图③,在5×5的正方形网格图上有一个△ABC,点A,B,C均在格点上,在给出的网格图上有一个格点D,使得点D为△ABC的“同类点”,则这样的点D共有__________个;

(3)凸四边形ABCD中,∠ABC=110°,DA=AB=BC,对角线AC,BD交于点O,且BD≠CD,若点C为△ABD的“同类点”,请直接写出满足条件的∠ADC的度数.
下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△DEF成轴对称,则△ABC一定与△DEF全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )
A.2 | B.3 | C.4 | D.5 |
如图,∠AOB=30°,P是∠AOB内的一点,且OP=4cm,C、D分别是P关于OA、OB的对称点,连结CD、PM、PN,则△PMN的周长为________.

在平面直角坐标系中,已知
,
,
.
(1)如图1,若
,
于点
,
轴交
于点
,则
_____.
(2)如图2,若
,
的平分线
交
于点
,过
上一点作
,交
于点
,
是
的高,探究
与
的数量关系;
(3)如图3,在(1)的条件下,
上点
满足
,直线
交
轴于点
,求点
的坐标.



(1)如图1,若







(2)如图2,若













(3)如图3,在(1)的条件下,








如图,已知∠MON=30°,点A1、A2、A3……在射线ON上,点B1、B2、B3……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4……均为等边三角形,且OA1=1.

(1)分别求出△A1B1A2、△A3B3A4的边长;
(2)求△A7B7A8的周长(直接写出结果).

(1)分别求出△A1B1A2、△A3B3A4的边长;
(2)求△A7B7A8的周长(直接写出结果).
已知:等边三角形ABC
(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;

(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD
