







(1)如图(1),当点



(2)如图(2),当点



如图,点C是长度为8的线段AB上一动点,如果AC<BC,分别以AC、BC为边在线段AB的同侧作等边△ACD、△BCE,联结DE,当△CDE的面积为3
时,线段AC的长度是_____.


已知△ABC是等边三角形,点P在射线AC上(点P与点A、点C不重合),点D在线段BC的延长线上,且AP=CD,△PCD′与△PCD关于直线AC对称.

(1)如图1,当点P在线段AC上时,
①求证:PB=PD;
②请求出∠BPD′的度数;
(2)当点P在射线AC上运动时,请直接回答:
①PB=PD是否仍然成立?
②∠BPD′的度数是否发生变化?
(3)将△PCD′绕点P顺时针旋转,在旋转的过程中,PD′与PB能否重合?若能重合,请直接写出旋转的角度;若不能重合,请说明理由;
(4)若AB=4,当点P为AC边的中点时,请直接写出PD'的长

(1)如图1,当点P在线段AC上时,
①求证:PB=PD;
②请求出∠BPD′的度数;
(2)当点P在射线AC上运动时,请直接回答:
①PB=PD是否仍然成立?
②∠BPD′的度数是否发生变化?
(3)将△PCD′绕点P顺时针旋转,在旋转的过程中,PD′与PB能否重合?若能重合,请直接写出旋转的角度;若不能重合,请说明理由;
(4)若AB=4,当点P为AC边的中点时,请直接写出PD'的长
如图1,
和
是两块可以完全重合的三角板,
,
. 在图1所示的状态下,
固定不动,将
沿直线
向左平移.
(1)当
移到图2位置时连接位綱连接
、
,求证:
;
(2)如图3,在上述平移过程中,当点
与
的中点重合时,直线
与AD有什么位置关系,请写出证明过程. 







(1)当




(2)如图3,在上述平移过程中,当点




在△ABC中,AB = AC,在△ABC的外部作等边三角形△ABD,E为AB的中点,连接 DE并延长交BC于点

A. (1)如图1,若∠BAC = 90°,连接CD,求证:CD平分∠ADF; (2)如图2,过点A折叠∠CAD,使点C与点D重合,折痕AM交EF于点M,若点M正好在∠ABC的平分线上,连接BM并延长交AC于点N,课堂上两个学习小组分别得出如下两个结论:①∠BAC的度数是一个定值,为100°;②线段MN与NC一定相等. 请你选择其中一个结论,判断是否正确?若正确,给予证明:若不正确,说明理由. |

一艘轮船由海平面上A地出发向南偏西30°的方向行驶50海里到达B地,再由B地向北偏西30°的方向行驶50海里到达C地,则A、C两地相距( )


A.100海里 | B.50![]() | C.50海里 | D.25海里 |