- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据等边对等角求角度
- 根据等边对等角证明
- 根据三线合一求解
- + 根据三线合一证明
- 等腰三角形的定义
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正确的有( )


A.1个 | B.2个 | C.3个 | D.4个 |
(1)阅读理解:
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图1所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,
“宽臂”的宽度=PQ=QR=RS,(这个条件很重要哦!)勾尺的一边MN满足M,N,Q三点共线(所以PQ⊥MN).
下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE∥BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP.
请完成第三步操作,图中∠ABC的三等分线是射线 、 .
(2)在(1)的条件下补全三等分∠ABC的主要证明过程:
∵ ,BQ⊥PR,
∴BP=BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)
∴∠ =∠ .
∵PQ⊥MN,PT⊥BC,PT=PQ,
∴∠ =∠ .
(角的内部到角的两边距离相等的点在角的平分线上)
∴∠ =∠ =∠ .
(3)在(1)的条件下探究:
是否成立?如果成立,请说明理由;如果不成立,请在图2中∠ABC的外部画出
(无需写画法,保留画图痕迹即可).
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图1所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,
“宽臂”的宽度=PQ=QR=RS,(这个条件很重要哦!)勾尺的一边MN满足M,N,Q三点共线(所以PQ⊥MN).
下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE∥BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP.
请完成第三步操作,图中∠ABC的三等分线是射线 、 .
(2)在(1)的条件下补全三等分∠ABC的主要证明过程:
∵ ,BQ⊥PR,
∴BP=BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)
∴∠ =∠ .
∵PQ⊥MN,PT⊥BC,PT=PQ,
∴∠ =∠ .
(角的内部到角的两边距离相等的点在角的平分线上)
∴∠ =∠ =∠ .
(3)在(1)的条件下探究:



如图所示,在△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点

A. (1)求证:AC=2BF (2)连接DF,求证:AB垂直平分DF (3)连接AF,试判断△ACF的形状,并说明理由. |

如图,在四边形
中,
,点
为
上一点,
,
分别平分
,
.

(1)求证:
;
(2)求证:
;
(3)若
,
,则四边形
的面积为______(直接写出结果).









(1)求证:

(2)求证:

(3)若



如图所示,已知△ABC中AB=AC,E、D、F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.
求证:EG=
EF.
求证:EG=


下列说法正确的是:()
A.等腰三角形的高、中线、角平分线互相重合 |
B.顶角相等的两个等腰三角形全等 |
C.等腰三角形一边不可以是另一边的二倍 |
D.等腰三角形的两个底角相等 |
如图,在
中,
,将
沿着
方向平移得到
,其中点
在
边上,
与
相交于点
.
(1)求证:
是等腰三角形;
(2)当点
在什么位置时,点
是
的中点?说明理由.










(1)求证:

(2)当点



