- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- + SAS
- 用SAS直接证明三角形全等
- 用SAS间接证明三角形全等
- 全等的性质和SAS综合
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.
(1)求证:△AGE≌△AFC;
(2)若AB=AC,求证:AD=AF+BD.
(1)求证:△AGE≌△AFC;
(2)若AB=AC,求证:AD=AF+BD.

如图,△ABC中,∠B=∠C,D,E,F分别是BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=55°,则∠A=_____.

如图,在△ABC中,AB=AC,∠C=60°,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为一边的等边三角形.
(1)如图①,当点D在线段BC上时,求证:△AEB≌△ADC;
(2)如图①,探究BE和AC的位置关系,并说明理由.
(3)如图②,当点D在BC的延长线上时,(2)中结论还成立吗?说明理由.
(1)如图①,当点D在线段BC上时,求证:△AEB≌△ADC;
(2)如图①,探究BE和AC的位置关系,并说明理由.
(3)如图②,当点D在BC的延长线上时,(2)中结论还成立吗?说明理由.

如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE的度数为( )


A.60° | B.45° | C.30° | D.无法确定 |