- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- + SAS
- 用SAS直接证明三角形全等
- 用SAS间接证明三角形全等
- 全等的性质和SAS综合
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知
中,
,
,点
为
的中点,如果点
在线段
上以
的速度由点
向
点运动,同时,点
在线段
上由点
向
点以
的速度运动.经过( )秒后,
与
全等.



















A.2 | B.3 | C.2或3 | D.无法确定 |
如图,△ABC和△ECD都是等边三角形,B、C、D三点在一条直线上,AD与BE相交于点O,AD与CE相交于点F,AC与BE相交于点
A. (1)△BCE与△ACD全等吗?请说明理由. (2)求∠BOD度数. ![]() |
如图1,已知等边三角形ABC,点P为AB的中点,点D、E分别为边AC、BC上的点,∠APD+∠BPE=60°.
(1)①若PD⊥AC,PE⊥BC,直接写出PD、PE的数量关系:____;
②如图1,证明:AP=AD+BE
(2)如图2,点F、H分别在线段BC、AC上,连接线段PH、PF,若PD⊥PF且PD=PF,HP⊥EP.求∠FHP的度数;
(1)①若PD⊥AC,PE⊥BC,直接写出PD、PE的数量关系:____;
②如图1,证明:AP=AD+BE
(2)如图2,点F、H分别在线段BC、AC上,连接线段PH、PF,若PD⊥PF且PD=PF,HP⊥EP.求∠FHP的度数;

如图,在△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.

(1)如果点P在线段BC上以3厘米/秒的速度由B向C点运动,同时点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,当经过1秒时,△BPD与△CQP是否全等,请判断并说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?
(2)若点Q以②的运动速度从点C出发,点P以原来运动速度从点B同时出发,都逆时针沿△ABC的三边运动,求经过多长时间,点P与点Q第一次在△ABC的哪条边上会相遇?

(1)如果点P在线段BC上以3厘米/秒的速度由B向C点运动,同时点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,当经过1秒时,△BPD与△CQP是否全等,请判断并说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?
(2)若点Q以②的运动速度从点C出发,点P以原来运动速度从点B同时出发,都逆时针沿△ABC的三边运动,求经过多长时间,点P与点Q第一次在△ABC的哪条边上会相遇?
已知:Rt△ABC中,∠C=90°,∠ABC=30°.

(1)探究应用1:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB的中点F,连接E

(1)探究应用1:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB的中点F,连接E
A.线段BE与DE之间的数量关系是_________,并说明理由; (2)探究应用2:如图2,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB的延长线上,以AD为边作等边△ADE,连接B | B.线段BE与DE之间的数量关系是__________,并说明理由。 |