- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE垂足为F,DE交CB的延长线于点G,连接AG,若S四边形DGBA=6,AF=
,则FG的长是_____.


尺规作图作
的平分线方法如下:以
为圆心,任意长为半径画弧交
、
于
、
,再分别以点
、
为圆心,以大于
长为半径画弧,两弧交于点
,作射线
由作法得
的根据是()














A.SAS | B.ASA | C.AAS | D.SSS |
如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE=75,则S△ABC=_____.

如图所示,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.

(1)证明:△ADE≌△CFE;
(2)若AB=AC,DB=2,CE=5,求CF.

(1)证明:△ADE≌△CFE;
(2)若AB=AC,DB=2,CE=5,求CF.
如图1,在等边
和等边
中,
,点P在
的高
上(点
与点
不重合),点
在点
的左侧,连接
,
.
(1)求证:
;
(2)当点
与点
重合时,延长
交
于点
,请你在图2中作出图形,并求出
的长;
(3)直接写出线段
长度的最小值.












(1)求证:

(2)当点






(3)直接写出线段



如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )


A.CB=CD | B.∠BCA=∠DCA |
C.∠BAC=∠DAC | D.∠B=∠D=90° |
如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点
A.![]() (1)求证:△ABE≌△CAD; (2)求∠BFD的度数. |
如图,在等腰△ABC中,BA=BC,∠ABC=100°,AB平分∠WAC.在线段AC上有一动点D,连接BD并作∠DBE,使∠DBE=50°,BE边交直线AW于点E,连接DE.

(1)如图1,当点E在射线AW上时,直接判断:AE+DE CD;(填“>”、“=”或“<”)
(2)如图2,当点E在射线AW的反向延长线上时,
①判断线段CD,DE,AE之间的数量关系,并证明;
②若S四边形ABDE﹣S△BCD=6,且2DE=5AE,AD=
AE,求S△ABC的值.

(1)如图1,当点E在射线AW上时,直接判断:AE+DE CD;(填“>”、“=”或“<”)
(2)如图2,当点E在射线AW的反向延长线上时,
①判断线段CD,DE,AE之间的数量关系,并证明;
②若S四边形ABDE﹣S△BCD=6,且2DE=5AE,AD=
