- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M.
求证:BN=CM.
求证:BN=CM.

如图,已知AB∥FE且AB=FE,要证明△ABC≌△EFD,需补充条件( )


A.BC=FD | B.AD=CE | C.CD=DO | D.AE=EA |
已知R△ABDC中,∠C=90°,AD、BE是角平分线,它们相交于P,PF⊥AD于P交BC的延长线于F,交AC于H.
(1)求证:AH+BD=AB;
(2)求证:PF=PA.
(1)求证:AH+BD=AB;
(2)求证:PF=PA.

Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D
A.其中正确的是( )![]() | |||
B.①③ | C.①②④ | D.①③④ | E.①②③④ |