- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是( )


A.AC=BD | B.∠OBC=∠OCB |
C.S△AOB=S△DOC | D.∠BCD=∠BDC |
已知等边三角形ABC,点D是边AC上任意一点,延长BC至E,使CE=AD.
(1)如图1,点D是AC中点,求证:DB=DE;
(2)如图2,点D不是AC中点,求证:DB=DE;
(3)如图3,点D不是AC中点,点F是BD的中点,连接AE,AF,求证:AE=2AF.
(1)如图1,点D是AC中点,求证:DB=DE;
(2)如图2,点D不是AC中点,求证:DB=DE;
(3)如图3,点D不是AC中点,点F是BD的中点,连接AE,AF,求证:AE=2AF.

已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF

如图(1),AB=7cm,AC⊥AB,BD⊥AB 垂足分别为 A、B,AC=5cm.点P 在线段 AB 上以 2cm/s 的速度由点 A 向点B 运动,同时,点 Q 在射线 BD 上运动.它们运动的时间为 t(s)(当点 P 运动结束时,点 Q 运动随之结束).

(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等,并判断此时线段 PC 和线段 PQ 的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB” 改为 “∠CAB=∠DBA=60°”,点Q 的运动速度为 x cm/s,其他条件不变,当点 P、Q 运动到某处时,有△ACP 与△BPQ 全等,求出相应的x、t 的值.

(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等,并判断此时线段 PC 和线段 PQ 的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB” 改为 “∠CAB=∠DBA=60°”,点Q 的运动速度为 x cm/s,其他条件不变,当点 P、Q 运动到某处时,有△ACP 与△BPQ 全等,求出相应的x、t 的值.
如图,点E、F、C、B在同一直线上,AB=DE,∠A=∠D,添加下列一个条件,不能判定△ABC≌△DEF的条件是( )


A.∠ACB=∠DFE | B.AC=DE | C.∠B=∠E | D.BC=EF |
如图,小明数学书上的一个三角形被墨水污染了一部分,他根据所学知识,在练习本上画出了完全一样的一个三角形,他的依据是( )


A.AAS | B.ASA | C.SSS | D.SAS |
雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=
AB,AF=
AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.



如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.

(1)求m和n的值.
(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.
(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.

(1)求m和n的值.
(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.
(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.