- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N。求证:MN=AM+BN。

在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,
,
,
,
,垂足分别为
,
,
,
,求
的长.”

(1)请你也独立完成这道题:
(2)待同学们完成这道题后,张老师又出示了一道题:
在课本原题其它条件不变的前提下,将
所在直线旋转到
的外部(如图2),请你猜想
,
,
三者之间的数量关系,直接写出结论:_______.(不需证明)
(3)如图3,将(1)中的条件改为:在
中,
,
,
,
三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=
,其中
为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由:










(1)请你也独立完成这道题:
(2)待同学们完成这道题后,张老师又出示了一道题:
在课本原题其它条件不变的前提下,将





(3)如图3,将(1)中的条件改为:在







如图,在Rt△ABC中,∠ACB=90°,EF⊥AB于点D,交BC的延长线于点E.若AB=EF且BE=16,CF=6,则AC=_____.

如图,小亮同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是 ( )


A.带①去 | B.带②去 | C.带③去 | D.带①和②去 |
如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.

(1)求证:△BCD≌△ACE;
(2)若AD=3,BD=4,求DE的长.

(1)求证:△BCD≌△ACE;
(2)若AD=3,BD=4,求DE的长.
如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,则OE的最小值是为( )


A.![]() | B.0.25 | C.1 | D.2 |
如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,联结BD与CE交于点F,BD交AE于点
A.![]() (1)求证:△AEC≌△ADB ; (2)若AB=2,∠ACB=67.5°,AC∥DF ,求BD的长. |
如图△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.
(1)求证:CD=CG;
(2)若AD=CG,求证:AB=AC+BH.
(1)求证:CD=CG;
(2)若AD=CG,求证:AB=AC+BH.
