根据解答过程填空(理由或数学式) :如图,∠DAF=∠F, ∠B=∠D,那么AB与DC平行吗?

解:AB∥DC
∵∠DAF=∠F( ),
∴AD∥BF( )
∴∠D=∠DCF( )
∵∠B=∠D(已知),
∴∠ =∠DCF( )
∴AB∥DC( )

解:AB∥DC
∵∠DAF=∠F( ),
∴AD∥BF( )
∴∠D=∠DCF( )
∵∠B=∠D(已知),
∴∠ =∠DCF( )
∴AB∥DC( )
如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点连结EF,分别交AD、BC于点G、H.若∠1=∠2,∠A= ∠C,试说明AD//BC和AB//CD.

如图,AB⊥BD,CD⊥BD,∠A与∠AEF互补,以下是证明CD//EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由。

证明:∵AB⊥BD,CD⊥BD(已知)
∴∠ABD=∠CDB=_______________.(____________________)
∴∠ABD+∠CDB=180°
∴AB∥____________(____________________)
又∠A与∠AEF互补(____________________)
∴∠A+∠AEF=___________(____________________)
∴AB//___________(____________________)
∴CD//EF(____________________)

证明:∵AB⊥BD,CD⊥BD(已知)
∴∠ABD=∠CDB=_______________.(____________________)
∴∠ABD+∠CDB=180°
∴AB∥____________(____________________)
又∠A与∠AEF互补(____________________)
∴∠A+∠AEF=___________(____________________)
∴AB//___________(____________________)
∴CD//EF(____________________)
如图,已知直线AB∥CD,直线
分别交
,
于
,
两点,若
,
分别是
,
的角平分线,试说明:ME∥N









A.![]() 解:∵AB∥CD,(已知) ∴ ![]() ∵ ![]() ![]() ![]() ![]() ∴∠EMN= ∠AMN, ∠FNM= ∠DNM,(角平分线的定义) ∴ ![]() ∴ME∥NF,( ) 由此我们可以得出一个结论:两条平行线被第三条直线所截,一对 角的平分线互相 . |
填空,将理由补充完整.
如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC
证明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定义)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定义)
∴∠1=∠2 ( )
∴∠1=∠3(等量代换)
∴FG∥BC ( )
如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC
证明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定义)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定义)
∴∠1=∠2 ( )
∴∠1=∠3(等量代换)
∴FG∥BC ( )

如图,D,E为△ABC边AB上两点,F,H分别在AC,BC上,∠1+∠2=180°
(1)求证:EF∥DH;
(2)若∠ACB=90°,∠DHB=25°,求∠EFC的度数.
(1)求证:EF∥DH;
(2)若∠ACB=90°,∠DHB=25°,求∠EFC的度数.
