- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- + 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,A(-2,2)、AB⊥x轴于点B,AD⊥y轴于点D,C(-2,1)为AB的中点,直线CD交x轴于点F.
(1)求直线CD的函数关系式;
(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;
(3)求点E坐标;
(4)点P是直线CE上的一个动点,求PB+PF的最小值.
(1)求直线CD的函数关系式;
(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;
(3)求点E坐标;
(4)点P是直线CE上的一个动点,求PB+PF的最小值.

如图,在平面直角坐标系中,已知
厘米,
厘米,点
从点
开始沿
边向点
以
厘米/秒的速度移动;点
从点
开始沿
边向点
以
厘米/秒的速度移动。如果
,
同时出发,用
(秒)表示移动的时间
,那么

(1)设
的面积为
,求
关于
的函数关系式;
(2)当
为何值时,
与
相似.

















(1)设




(2)当



如图,在平面直角坐标系中,直线y=
x-
与矩形ABCD的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是( )




A.6 | B.3 | C.12 | D.![]() |
如图,在平面直角坐标系中(请补画出必要的图形),O为坐标原点,直线y= -2x+4与x、y轴分别交于A、B两点,过线段OA的中点C作x轴的垂线l,分别与直线AB交于点D,与直线y=x+n交于点P。
(1)直接写出点A、B、C、D的坐标:A( ),B( ),C( ),D( )
(2)若△APD的面积等于1,求点P的坐标.
(1)直接写出点A、B、C、D的坐标:A( ),B( ),C( ),D( )
(2)若△APD的面积等于1,求点P的坐标.

已知直线l1:y1=2x+3与直线l2:y2=kx﹣1交于A点,A点横坐标为﹣1,且直线l1与x轴交于B点,与y轴交于D点,直线l2与y轴交于C点.
(1)求出A、B、C、D点坐标;
(2)求出直线l2的解析式;
(3)连结BC,求出S△ABC.
(1)求出A、B、C、D点坐标;
(2)求出直线l2的解析式;
(3)连结BC,求出S△ABC.

如图,直线y=x+4与两坐标轴相交于A,B两点,点P为线段OA上的动点,连结BP,过点A作AM垂直于直线BP,垂足为M,当点P从点O运动到点A时,则点M经过的路径长为_____.

如图,直线
是一次函数
的图象,直线
是一次函数
的图象.
(1)求A、B、P三点坐标;
(2)求
的面积;
(3)已知过P点的直线把
分成面积相等的两部分,求该直线解析式.




(1)求A、B、P三点坐标;
(2)求

(3)已知过P点的直线把


如图,在平面直角坐标系中,直线l1:y=
x+b与直线l2:y=kx+7交于点A(2,4),直线l1与x轴交于点C,与y轴交于点B,将直线l1向下平移7个单位得到直线l3,l3与y轴交于点D,与l2交于点E,连接AD.
(1)求交点E的坐标;
(2)求△ADE的面积.


(1)求交点E的坐标;
(2)求△ADE的面积.
如图,在平面直角坐标系中,直线l1的解析式为
,直线l2的解析式为
,与x轴、y轴分别交于点A、点B,直线l1与l2交于点


A.![]() ![]() (1)求点A、点B、点C的坐标,并求出△COB的面积; (2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标; (3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由. |