- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- + 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s,在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(x)之间的关系如图,则乙到终点时甲到终点的距离为_____.

如图①所示,甲、乙两车从
地出发,沿相同路线前往同一目的地,途中经过
地.甲车先出发,当甲车到达
地时,乙车开始出发.当乙车到达
地时,甲车与
地相距
.设甲、乙两车与
地之间的距离为,
,
,乙车行驶的时间为
,
,
与
的函数关系如图②所示.

(1)
,
两地之间的距离为
;
(2)当
为何值时,甲、乙两车相距
?














(1)



(2)当


甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y (km)与甲车行驶的时间x (h)的函数关系图象为折线O-A-B,乙车行驶的路程y (km)与甲车行驶的时间x(h)的函数关系图象为线段CD.
(1)求线段AB所在直线的函数表达式;
(2)①乙车比甲车晚出发 小时;
②乙车出发多少小时后追上甲车?
(3)乙车出发多少小时后甲、乙两车相距10千米?
(1)求线段AB所在直线的函数表达式;
(2)①乙车比甲车晚出发 小时;
②乙车出发多少小时后追上甲车?
(3)乙车出发多少小时后甲、乙两车相距10千米?

如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为_____(只填序号).

放假时小华父子俩一同出发去露营,步行途中小华发现睡袋忘拿了跑步回家取,之后立刻返程跑步追赶爸爸,期间爸爸继续步行去往露营地,会合时爸爸发现还需要探照灯,为节约时间爸爸乘车回家去拿,小华继续步行至露营地,爸爸拿到探照灯后乘车也到了终点(假定步行、跑步和汽车均为匀速,且二人取物品时间忽略不计),二人之间的距离s(米)与他们出发时间t(分钟)之间的关系如图所示,则当爸爸到家时,小华与露营地相距_____米.

A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中l1、l2分别表示甲、乙两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.
(1)根据图象,直接写出乙的行驶速度;
(2)解释交点A的实际意义;
(3)甲出发多少时间,两人之间的距离恰好相距5km;
(4)若用y3(km)表示甲乙两人之间的距离,请在坐标系中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.

(1)根据图象,直接写出乙的行驶速度;
(2)解释交点A的实际意义;
(3)甲出发多少时间,两人之间的距离恰好相距5km;
(4)若用y3(km)表示甲乙两人之间的距离,请在坐标系中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.


一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图像进行以下研究:


(1)甲、乙两地之间的距离为 km;线段AB的解析式为 ;线段OC的解析式为 ;
(2)经过多长时间,快慢车相距50千米?
(3)设快、慢车之间的距离为y(km),并画出函数的大致图像.


(1)甲、乙两地之间的距离为 km;线段AB的解析式为 ;线段OC的解析式为 ;
(2)经过多长时间,快慢车相距50千米?
(3)设快、慢车之间的距离为y(km),并画出函数的大致图像.
“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆_____km.

某县实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲、乙两个工程队分别从A、B两村同时开始修筑,施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通,下图是甲、乙两个工程队修道路长度y(米)与修筑时间x(天)之间的函数图象,请根据图象所提供的信息,解答下列问题:

(1)写出乙工程队修道路的长度y与修筑时间x之间的函数关系式:_____;
(2)甲工程队前8天所修公路为_____米,该公路的总长度为_____米;
(3)若乙工程队不提前离开,则两队只需_____天就能完成任务;
(4)甲、乙两工程队第_____天时所修道路的长度相差80米.

(1)写出乙工程队修道路的长度y与修筑时间x之间的函数关系式:_____;
(2)甲工程队前8天所修公路为_____米,该公路的总长度为_____米;
(3)若乙工程队不提前离开,则两队只需_____天就能完成任务;
(4)甲、乙两工程队第_____天时所修道路的长度相差80米.
有一笔直的公路连接M,N两地,甲车从M地驶往N地,速度为60km/h,乙车从M地驶往N地,速度为40km/h,丙车从N地驶往M地,速度为80km/h,三辆车同时出发,先到目的地的车停止不动.途中甲车发生故障,于是停车修理了2.5h,修好后立即按原速驶往N地.设甲车行驶的时间为t(h),甲、丙两车之间的距离为S1(km).甲、乙两车离M地的距离为S2(km),S1与t之间的关系如图1所示,S2与t之间的关系如图2所示.根据题中的信息回答下列问题:

(1)①图1中点C的实际意义是 ;
②点B的横坐标是 ;点E的横坐标是 ;点Q的坐标是 ;
(2)请求出图2中线段QR所表示的S2与t之间的关系式;
(3)当甲、乙两车距70km时,请直接写出t的值.

(1)①图1中点C的实际意义是 ;
②点B的横坐标是 ;点E的横坐标是 ;点Q的坐标是 ;
(2)请求出图2中线段QR所表示的S2与t之间的关系式;
(3)当甲、乙两车距70km时,请直接写出t的值.