- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- + 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
古代名著《算学启蒙》中有一题:“良马日行二百四十里.驽马日行一百五十里.驽马先行十二日,问良马几日追及之”,如图是两马行走的路程
关于时间
的函数图像.

(1)
的函数解析式为_______.
(2)求
点的坐标.
(3)若两匹马先在甲站,再从甲站出发行往乙站,并停留在乙站,且甲、乙两站之间的路程为
里,请问
为何值时,驽马与良马相距
里?



(1)

(2)求

(3)若两匹马先在甲站,再从甲站出发行往乙站,并停留在乙站,且甲、乙两站之间的路程为



某景区内从甲地到乙地的路程是
,小华步行从甲地到乙地游玩,速度为
,走了
后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是
,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为
,第
趟电瓶车距乙地的路程为
,
为正整数,行进时间为
.如图画出了
,
与
的函数图象.

(1)观察图,其中
,
;
(2)求第2趟电瓶车距乙地的路程
与
的函数关系式;
(3)当
时,在图中画出
与
的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.













(1)观察图,其中


(2)求第2趟电瓶车距乙地的路程


(3)当



如图(1),A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以1.5m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图(2)所示.

(1)赛道的长度是 m,甲的速度是 m/s;当t= s时,甲、乙两人第一次相遇,当t= s时,甲、乙两人第二次相遇?
(2)第三次相遇时,两人距池边B1B2多少米.

(1)赛道的长度是 m,甲的速度是 m/s;当t= s时,甲、乙两人第一次相遇,当t= s时,甲、乙两人第二次相遇?
(2)第三次相遇时,两人距池边B1B2多少米.
甲、乙两人同时骑自行车分别从A、B两地出发到AB之间的C地,且A、B、C三地在同一直线上.当乙到达C地时甲还未到达,乙在C地等了5分钟,接到甲的电话说他的自行车坏了需要工具修理,于是乙在C地拿了工具箱立即以原来
倍的速度前往甲坏车处,乙与甲会合后帮助甲花了10分钟修好自行车,然后两人以甲原来
倍的速度骑行同时到达C地.甲乙两人距C地的距离之和y(米)与甲所用时间x(分钟)之间的函数关系如图所示(乙接电话和找工具箱的时间忽略不计),则A、B两地之间的距离为___米.



甲、乙两车从
城出发匀速行驶至
城在整个行驶过程中,甲乙两车离开
城的距离
与甲车行驶的时间
之间的函数关系如图所示下列说法错误的是( )
甲、乙两车从AA城出发匀速行驶至BB城在整个行驶过程中,甲乙两车离开AA城的距离y(km)ykm与甲车行驶的时间t(h)th之间的函数关系如图所示下列说法错误的是( )






甲、乙两车从AA城出发匀速行驶至BB城在整个行驶过程中,甲乙两车离开AA城的距离y(km)ykm与甲车行驶的时间t(h)th之间的函数关系如图所示下列说法错误的是( )

A.![]() ![]() ![]() |
B.乙车比甲车晚出发![]() ![]() |
C.乙车出发后![]() |
D.在一车追上另一车之前,当两车相距![]() ![]() |
王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:
(1)爷爷比小强先上了多少米?山顶离山脚多少米?
(2)谁先爬上山顶?小强爬上山顶用了多少分钟?
(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?
(1)爷爷比小强先上了多少米?山顶离山脚多少米?
(2)谁先爬上山顶?小强爬上山顶用了多少分钟?
(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?

某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:
(1)洗衣机的进水时间是______分钟,清洗时洗衣机中的水量是_______升.
(2)进水时y与x之间的关系式是____________.
(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是____________升.
(1)洗衣机的进水时间是______分钟,清洗时洗衣机中的水量是_______升.
(2)进水时y与x之间的关系式是____________.
(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是____________升.

小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程
与所用时间
之间的函数关系.试根据函数图像解答下列问题:
(1)小明在途中停留了____
,小明在停留之前的速度为____
;
(2)求线段
的函数表达式;
(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,
时,两人同时到达乙地,求
为何值时,两人在途中相遇.


(1)小明在途中停留了____


(2)求线段

(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,




一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,慢车的速度是快车速度的
,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.
根据图象解决以下问题:
(1)甲、乙两地之间的距离为 km;D点的坐标为 ;
(2)求线段BC的函数关系式,并写出自变量x的取值范围;
(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?

根据图象解决以下问题:
(1)甲、乙两地之间的距离为 km;D点的坐标为 ;
(2)求线段BC的函数关系式,并写出自变量x的取值范围;
(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?

已知A、B两地相距12km,甲、乙两人沿同一条公路分别从A、B两地出发相向而行,甲, 乙两人离B地的路程s(km)与时间t(h)的函数关系图象如图所示, 则两人在甲出发后相遇所需的时间是()


A.1.2h | B.1.5h | C.1.6h | D.1.8h |