- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- + 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图是某汽车行驶的路程s(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:

(1)汽车在前9分钟的平均速度是 千米/分钟.
(2)汽车在途中停留的时间为 分钟.
(3)当16≤t≤30时,求s与t的函数解析式

(1)汽车在前9分钟的平均速度是 千米/分钟.
(2)汽车在途中停留的时间为 分钟.
(3)当16≤t≤30时,求s与t的函数解析式
小明和妈妈购物后回家,在一楼电梯口看到电梯正显示在顶楼(9楼),他们等了18s后,电梯显示在7楼,这时小明选择走楼梯,高度上升的速度为
,他妈妈则继续等电梯,结果两个人同时到达家所在的楼层。图中所示的细线、粗线分别表示电梯匀速升降、小明走楼梯与一楼地面的距离h(m)与时间t(s)之间的关系。(温馨提示:小明家所在的电梯楼房为3m一层,人们进出电梯所用时间忽略不计,楼层与楼高的关系).

(1)写出A,B两点的坐标;
(2)写出直线AB的解析式,并解释点C的实际意义;
(3)求a,b的值,并求出小明家所处的楼层.


(1)写出A,B两点的坐标;
(2)写出直线AB的解析式,并解释点C的实际意义;
(3)求a,b的值,并求出小明家所处的楼层.
大伟老师购买了一辆新车,加满油后,经过一段时间的试驾,得到一组行驶里程与剩余油量的数据:行驶里程x(km)和剩余油量y(L)的部分关系如表:
(1)求出y与x之间的关系式;
(2)大伟老师驾车到4158公里外的拉萨,问中途至少需要加几次油.
x | 100 | 200 | 300 | 350 | 400 |
y | 43 | 36 | 29 | 25.5 | 22 |
(1)求出y与x之间的关系式;
(2)大伟老师驾车到4158公里外的拉萨,问中途至少需要加几次油.







(1)求


(2)求

如图12,端午节期间,某地举行龙舟比赛.甲、乙两支龙舟队在比赛时路程y(米)与时间x(分钟)之间的函数图象如图所示,根据图象回答下列问题:

【小题1】1.8分时,哪支龙舟队处于领先位置?
【小题2】在这次龙舟比赛中,哪只龙舟队先到达终点?先到达多长时间?
【小题3】求乙队加速后,路程y(米)与时间x(分钟)之间的函数解析式.

【小题1】1.8分时,哪支龙舟队处于领先位置?
【小题2】在这次龙舟比赛中,哪只龙舟队先到达终点?先到达多长时间?
【小题3】求乙队加速后,路程y(米)与时间x(分钟)之间的函数解析式.
小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图像如图中的折线段OA-OB所示.
(1)试求折线段OA-OB所对应的函数关系式;
(2)请解释图中线段AB的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离
(千米)与小明出发后的时间
(分钟)之间函数关系的图像.(友情提醒:请对画出的图像用数据作适当的标注)
(1)试求折线段OA-OB所对应的函数关系式;
(2)请解释图中线段AB的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离



甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:

(1)请你在A,B,C,D,E五个点任意选择一个点解释它的实际意义;
(2)求线段DE对应的函数关系式;
(3)当轿车出发1h后,两车相距多少千米;
(4)当轿车出发几小时后两车相距30km?

(1)请你在A,B,C,D,E五个点任意选择一个点解释它的实际意义;
(2)求线段DE对应的函数关系式;
(3)当轿车出发1h后,两车相距多少千米;
(4)当轿车出发几小时后两车相距30km?
甲、乙两地相距20千米.小明上午8:30骑自行车由甲地去乙地,平均车速8千米/小时;小丽上午10:00坐公共汽车沿相同的路线也由甲地去乙地,平均车速为40千米/小时.

(1)分别写出两人离甲地的距离与时间的函数关系式,并在同一平面直角坐标系中画出两个函数的图象;
(2)判断谁先到达乙地,并说明理由.

(1)分别写出两人离甲地的距离与时间的函数关系式,并在同一平面直角坐标系中画出两个函数的图象;
(2)判断谁先到达乙地,并说明理由.
(本小题6分)图中折线表示芳芳骑自行车离家的距离与时间的关系,她9点离开家,15点回家,请根据图象回答下列问题:

(1)芳芳到达离家最远的地方时,离家________千米;
(2)第一次休息时离家________ 千米;
(3)她在10:00~10:30的平均速度是_________;
(4)芳芳一共休息了_________ 小时;
(5)芳芳返回用了____________小时;
(6)返回时的平均速度是__________.

(1)芳芳到达离家最远的地方时,离家________千米;
(2)第一次休息时离家________ 千米;
(3)她在10:00~10:30的平均速度是_________;
(4)芳芳一共休息了_________ 小时;
(5)芳芳返回用了____________小时;
(6)返回时的平均速度是__________.
一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:
(1)甲乙两地之间的距离为 千米;
(2)求快车和慢车的速度;
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
(1)甲乙两地之间的距离为 千米;
(2)求快车和慢车的速度;
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
