- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- + 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
A,B两地相距20
,甲乙两人沿同一条路线从
地到
地,如图反映的是二人行进路程
(
)与行进时间
(
)之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )









A.1个 | B.2个 | C.3个 | D.4个 |
学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示

(1)根据图象信息,当t= 分钟时甲乙两人相遇,甲的速度为 米/分钟;
(2)求出线段AB所表示的函数表达式
(3)甲、乙两人何时相距400米?

(1)根据图象信息,当t= 分钟时甲乙两人相遇,甲的速度为 米/分钟;
(2)求出线段AB所表示的函数表达式
(3)甲、乙两人何时相距400米?
快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:

(1)甲、乙两地相距 千米,快车休息前的速度是 千米/时、慢车的速度是 千米/时;
(2)求图中线段EC所表示的y1与x之间的函数表达式;
(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.

(1)甲、乙两地相距 千米,快车休息前的速度是 千米/时、慢车的速度是 千米/时;
(2)求图中线段EC所表示的y1与x之间的函数表达式;
(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.
如图1所示,在两地
之间有汽车站
站,客车由
地驶往
站,货车由
地驶往
地两车同时出发,匀速行驶图2是客车、货车离
站的路程
(千米)与行驶时间
(小时)之间的函数关系图像.

(1)填空:
两地相距 千米;货车的速度是 千米/时;
(2)求三小时后,货车离
站的路程
与行驶时间
之间的函数表达式;
(3)试求客车与货两车何时相距
千米?










(1)填空:

(2)求三小时后,货车离



(3)试求客车与货两车何时相距

小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y(km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.
(1)小明骑自行车的速度为 km/h、妈妈骑电动车的速度为 km/h;
(2)解释图中点E的实际意义,并求出点E的坐标;
(3)求当t为多少时,两车之间的距离为18km.
(1)小明骑自行车的速度为 km/h、妈妈骑电动车的速度为 km/h;
(2)解释图中点E的实际意义,并求出点E的坐标;
(3)求当t为多少时,两车之间的距离为18km.

甲乙二人走步晨练,两人同时同地向距离600米的目标出发,二人所走的路程y(米)与所走的时间t(分)之间的函数关系如图所示,下列说法:①甲走全程的平均速度为75米/分:②第4分钟时,二人在途中相遇;③第2分钟时甲在乙前面100米处;④乙比甲提前2.5分钟到达终点;其中正确的有( )个.


A.1 | B.2 | C.3 | D.4 |
小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离
(米)与小明出发的时间
(分)之间的关系,则小明出发______ 分钟后与爸爸相遇.



实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为
(分),与乙地的距离为
(米),图中线段EF,折线
分别表示两人与乙地距离
和运动时间
之间的函数关系图象

(1)李越骑车的速度为 米/分钟;F点的坐标为 ;
(2)求李越从乙地骑往甲地时,
与
之间的函数表达式;
(3)求王明从甲地到乙地时,
与
之间的函数表达式;
(4)求李越与王明第二次相遇时
的值.






(1)李越骑车的速度为 米/分钟;F点的坐标为 ;
(2)求李越从乙地骑往甲地时,


(3)求王明从甲地到乙地时,


(4)求李越与王明第二次相遇时

已知
、
两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从
地匀速开往
地,乙车从
地沿此公路匀速开往
地,两车分别到达目的地后停止甲、乙两车相距的路程
(千米)与甲车的行驶时间
(时)之间的函数关系如图所示:

(1)乙年的速度为______千米/时,
_____,
______.
(2)求甲、乙两车相遇后
与
之间的函数关系式,并写出相应的自变量
的取值范围.









(1)乙年的速度为______千米/时,


(2)求甲、乙两车相遇后


