- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,某花园护栏是由若干个直径
的半圆形条钢组合而成,且每增加一个半圆条钢,护栏长度就增加
,设半圆形条钢为
个,护栏总长度为
.

(1)若
.①当
时,
_____
;
②写出
与
的函数关系式为______;
(2)若护栏的总长度不变,当
时,用了
个半圆形条钢;当
时,用了
个半圆形条钢,求
,
之间满足的关系式(其中
,
均为正整数).





(1)若




②写出


(2)若护栏的总长度不变,当








甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.
(1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒;
(2)求乙跑步的速度及乙在途中等候甲的时间;
(3)求乙出发多长时间第一次与甲相遇?
(1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒;
(2)求乙跑步的速度及乙在途中等候甲的时间;
(3)求乙出发多长时间第一次与甲相遇?

假期小颖决定到游泳馆游泳,游泳馆门票有两种:
种是每天购票进馆,没有优惠;
种是每月先购买贵宾卡,持贵宾卡购票每张可减少8元.设小颖游泳
次,
(元)是按
种购票方案的费用,
(元)是按
种购票方案的费用根据图中信息解答问题:

(1)按
种方案购票,每张门票价格为 元;
(2)按
种方案购票,求
与
的函数解析式;
(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.








(1)按

(2)按



(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.
在一条笔直的公路上有AB两地,小明骑自行车从A地去B地,小刚骑电动车从B地去A地然后立即原路返回到B地,如图是两人离B地的距离y(千米)和行驶时间x(小时)之间的函数图象.请根据图象回答下列问题:
(1)AB两地的距离是_____,小明行驶的速度是_____.
(2)若两人间的距离不超过3千米时,能够用无线对讲机保持联系,那么小刚从A地原路返回到B地途中,两人能够用无线对讲机保持联系的x的取值范围是______.
(1)AB两地的距离是_____,小明行驶的速度是_____.
(2)若两人间的距离不超过3千米时,能够用无线对讲机保持联系,那么小刚从A地原路返回到B地途中,两人能够用无线对讲机保持联系的x的取值范围是______.

某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.
(1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;
(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?
(1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;
(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?
某商店计划一次购进两种型号的手机共110部,销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.
(1)求每部A型手机和B型手机的销售利润分别为多少元?
(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.
(1)求每部A型手机和B型手机的销售利润分别为多少元?
(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.
随着夏季的来临,襄阳夜市大虾市场逐渐火爆,大虾供不应求.大虾养殖户莫小贝为了照顾更多的客户制定了如下销售方案:购买数量不大于50斤的部分,46元/斤;购买数量大于50斤但不大于m(120≤m≤200)斤的部分,60元/斤;购买数量大于m斤的部分,80元/斤.
(1)若胡胖子在莫小贝处购得大虾80斤,则他应付多少元钱?
(2)若胡胖子在莫小贝处购得大虾x斤,应付的钱数为y元,请列出y关于x的函数解析式;
(3)若胡胖子在莫小贝处购得大虾160斤,应付钱数y元的取值范围是8000≤y≤9000,试求m的取值范围.
(1)若胡胖子在莫小贝处购得大虾80斤,则他应付多少元钱?
(2)若胡胖子在莫小贝处购得大虾x斤,应付的钱数为y元,请列出y关于x的函数解析式;
(3)若胡胖子在莫小贝处购得大虾160斤,应付钱数y元的取值范围是8000≤y≤9000,试求m的取值范围.
《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表累进计算:
(纳税款=应纳税所得额×对应税率)
(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;
(2)若某乙一月份应缴所得税款95元,那么他一月份的工资、薪金是多少元?
全月应税所得额 | 税率 |
不超过500元的部分 | 5% |
超过500元至2000元的部分 | 10% |
超过2000元至5000元的部分 | 15% |
…… | … |
(纳税款=应纳税所得额×对应税率)
(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;
(2)若某乙一月份应缴所得税款95元,那么他一月份的工资、薪金是多少元?
甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )


A.两车同时到达乙地 |
B.轿车在行驶过程中进行了提速 |
C.货车出发3小时后,轿车追上货车 |
D.两车在前80千米的速度相等 |
如图,一次函数y=
的图象与正比例函数y=mx(m≠0)的图象交于点A(a,2),与x轴交于点B.现将直线OA向右平移使其经过点B,平移后的直线与y轴交于点C,连接AC,则四边形AOBC的面积为_____.

