- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某演唱会购买门票的方式有两种
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;(注方式一中总费用=广告费用+门票费用)
方式二:按如图所示的购买门票方式.
设购买门票x张,总费用为y万元.
(1)求按方式一购买时y与x的函数关系式
(2)若甲、乙两个单位分采用方式一,方式二购买本场演唱会门共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;(注方式一中总费用=广告费用+门票费用)
方式二:按如图所示的购买门票方式.
设购买门票x张,总费用为y万元.
(1)求按方式一购买时y与x的函数关系式
(2)若甲、乙两个单位分采用方式一,方式二购买本场演唱会门共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?

在平面直角坐标系中,点A的坐标(-3,2),将点A绕若点O顺时针旋转90°得到点B若正比例函效y=kx的图象经过点B,则k的值为( )
A.6 | B.-6 | C.![]() | D.![]() |
甲、乙两地之间有一条笔直的公路l,张老师从甲地出发沿公路l步行前往乙地,同时小亮从乙地出发沿公路l骑自行车前往甲地.小亮到达甲地停留一段时间,原路原速返回,追上张老师后两人一起步行到乙地.设张老师与甲地的距离为y1(m),小亮与甲地的距离为y2(m),张老师与小亮之间的距离为s(m),张老师行走的时间为x(min).y1、y2与x之间的函数图象如图1所示,s与x之间的函数图象(部分)如图2所示.
(1)求小亮从乙地到甲地过程中y2(m)与x(min)之间的函数关系式;
(2)直接写出点E的坐标和它的实际意义;
(3)在图2中,补全整个过程中s(m)与x(min)之间的函数图象(标注关键点的坐标,所画图象加粗).
(1)求小亮从乙地到甲地过程中y2(m)与x(min)之间的函数关系式;
(2)直接写出点E的坐标和它的实际意义;
(3)在图2中,补全整个过程中s(m)与x(min)之间的函数图象(标注关键点的坐标,所画图象加粗).

某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:
(1)该地出租车的起步价是 元;
(2)当x>2时,求y与x之间的函数关系式;
(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?
(1)该地出租车的起步价是 元;
(2)当x>2时,求y与x之间的函数关系式;
(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?

如图,在平面直角坐标系中,O为坐标原点,直角△AOB的OA边在x轴上,OB边在y轴上,且OA=6,OB=8.沿直线AM将△ABM折叠,点B正好落在x轴上,则直线AM的解析式为_____.

某超市购进一批牛肉销售,经过还价,实际价格每千克比原来少2元,发现原来买这批牛肉32千克的钱,现在可买33千克.
(1)现在实际购进这批牛肉每千克多少元?
(2)若这批牛肉的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.求y与x之间的函数关系式;
(3)这批牛肉的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)
(1)现在实际购进这批牛肉每千克多少元?
(2)若这批牛肉的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.求y与x之间的函数关系式;
(3)这批牛肉的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)

阅读与探究
请阅读下列材料,完成相应的任务:幻方:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等,例如,图1是一个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3x3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等,我们称这种幻方为“数字连续型三阶幻方”.
任务:(1)观察图1中三阶幻方中间的数字与9个数的和,可以发现二者有确定的数量关系.设“数字连续型三阶幻方中间的数字是x,幻方中9个数的和为s,则s与x之间的数量关系为 ;
(2)现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.请将构造的幻方填写在图2的3×3方格中;
(3)某学习小组同学在研究图1的三阶幻方时,发现任何一个角上的数都有两个数与其不在同一行、列及对角线上,并且它们之间存在一个等量关系.为此该小组同学绘制了图3,请你用图3中的字母m,a,b表示他们发现的这个等量关系.(直接写出,不必证明)
请阅读下列材料,完成相应的任务:幻方:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等,例如,图1是一个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3x3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等,我们称这种幻方为“数字连续型三阶幻方”.
任务:(1)观察图1中三阶幻方中间的数字与9个数的和,可以发现二者有确定的数量关系.设“数字连续型三阶幻方中间的数字是x,幻方中9个数的和为s,则s与x之间的数量关系为 ;
(2)现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.请将构造的幻方填写在图2的3×3方格中;
(3)某学习小组同学在研究图1的三阶幻方时,发现任何一个角上的数都有两个数与其不在同一行、列及对角线上,并且它们之间存在一个等量关系.为此该小组同学绘制了图3,请你用图3中的字母m,a,b表示他们发现的这个等量关系.(直接写出,不必证明)

某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.
(1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买A、B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A、B两种商品的总费用不超过276元,那么该商店有几种购买方案?
(3)若购买A种商品m件,实际购买时A种商品下降了a(a>0)元,B种商品上涨了3a元,在(2)的条件下,此时购买这两种商品所需的最少费用为1076元,求m的值.
(1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买A、B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A、B两种商品的总费用不超过276元,那么该商店有几种购买方案?
(3)若购买A种商品m件,实际购买时A种商品下降了a(a>0)元,B种商品上涨了3a元,在(2)的条件下,此时购买这两种商品所需的最少费用为1076元,求m的值.