“莓好河南,幸福家园”,2019年某省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:
甲园
游客进园需购买20元/人的门票,采摘的草莓六折优惠
乙园
游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠
 
活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x(千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.

(1)求y1、y2与x之间的函数关系式;
(2)请在图中画出y1与x之间大致的函数图象;
(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(km)随行驶时间t(h)变化的图象.乙车9点出发,若要在11点时刚好追上甲车,则乙车的速度是___________.
当前题号:2 | 题型:填空题 | 难度:0.99
如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,B,Q为内部一点,则的最小值等于(    )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于
A.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。
当前题号:4 | 题型:解答题 | 难度:0.99
李明驾车以100千米/小时的速度从甲地匀速开往乙地,行驶到服务区休息了一段时间后以另一速度继续匀速行驶,直至到达乙地.李明与乙地的距离y(千米)与时间x(小时)之间的函数关系图象如图所示.

(1)求a的值;
(2)求李明从服务区到乙地y与x之间的函数关系式;
(3)求x=5时李明驾车行驶的路程.
当前题号:5 | 题型:解答题 | 难度:0.99
快、慢两车分别从相距千米路程的甲、乙两地同时出发,匀速行驶.先相向而行,快车到达乙地后,停留小时,然后按原路原速返回,快车比慢车晚小时到达甲地,快、慢两车之间相距的距离(千米)与出发后所用的时间(小时)的关系如图所示,请问:在快车返回途中,快、慢两车相距路程为千米时,慢车行驶了__________小时.
当前题号:6 | 题型:填空题 | 难度:0.99
为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2

(1)求y与x之间的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元
当前题号:7 | 题型:解答题 | 难度:0.99
某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)

设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
当前题号:8 | 题型:解答题 | 难度:0.99
甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min) 之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③;④.以上结论正确的有(    )
A.①④B.①②③C.①③④D.①②④
当前题号:9 | 题型:单选题 | 难度:0.99