- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
小慧家与文具店相距720米,小慧从家出发,匀速步行12分钟来到文具店,买文具用时4分钟,因家中有事,沿原路匀速跑步返回家中,用时6分钟.
(1)小慧返回家中的速度比去文具店的速度快 米/分钟;
(2)请你画出这个过程中,小慧离家的距离
与时间
的函数图象;
(3)求小慧从家出发后经过多少分钟与她家距离为480米.
(1)小慧返回家中的速度比去文具店的速度快 米/分钟;
(2)请你画出这个过程中,小慧离家的距离


(3)求小慧从家出发后经过多少分钟与她家距离为480米.

如图,在平面直角坐标系
中,直线
(
)与直线
平行,且与直线
交于点
.
(1)求直线
的函数表达式;
(2)
、
分别是直线
、
上两点,
点的横坐标为
,且
轴,若
,求
的值.






(1)求直线

(2)










海水养殖是莱州经济产业的亮丽名片之一,某养殖场响应山东省加快新旧动能转换的号召,今年采用新技术投资养殖了200万笼扇贝,并且全部被订购,已知每笼扇贝的成本是40元,售价是100元,打捞出售过程中发现,一部分扇贝生长情况不合要求,最后只能按照25元一笼出售,如果纯收入为
万元,不合要求的扇贝有
万笼.
(1)求纯收入
关于
的关系式.
(2)当
为何值时,养殖场不赔不嫌?


(1)求纯收入


(2)当

在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.

(1)求出直线y1=kx+b的解析式;
(2)求出点A的坐标;
(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△PAB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.

(1)求出直线y1=kx+b的解析式;
(2)求出点A的坐标;
(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△PAB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.
直线y=kx+3和x轴、y轴的交点分别为B、C,∠OBC=30°,点A的坐标是(﹣
,0),另一条直线经过点A、C.

(1)求点B的坐标及k的值;
(2)求证:AC⊥BC.


(1)求点B的坐标及k的值;
(2)求证:AC⊥BC.
某中学初中学生要租车去清华中学参加学习交流活动。已知出租汽车公司有甲、乙两种客车,租1辆甲型客车和2辆乙型客车每人一座可恰好坐162人;租用2辆甲型客车和1辆乙型客车每人一座恰好坐144人,出租公司的租金价格如下:甲型320元/辆,乙型460元/辆。大江中学共有660名师生,学校准备支付的租车的费用最多是5320元。
(1)求甲、乙两种型号的客车每辆各有多少个座位;
(2)若要租用甲、乙共14辆,怎样租车费用最低,并求出租车最低费用。
(1)求甲、乙两种型号的客车每辆各有多少个座位;
(2)若要租用甲、乙共14辆,怎样租车费用最低,并求出租车最低费用。
如图,一次函数
的图象与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°。
(1)求AC的长度;
(2)如果在第二象限内有一点
,试求四边形AOPB的面积S与m之间的函数关系式,并求当△APB与△ABC面积相等时m的值。
(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由。

(1)求AC的长度;
(2)如果在第二象限内有一点

(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由。

胖娃、猴子两人在1800米长的直线道路上跑步,胖娃、猴子两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,胖娃出发30秒后,猴子出发,猴子到终点后立即返回,并以原来的速度前进,最后与胖娃相遇,此时跑步结束. 如图,
(米)表示胖娃、猴子两人之间的距离,x(秒)表示胖娃出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系.那么,猴子到终点后_______秒与胖娃相遇.


如图1,在平面直角坐标系中,直线
分别交
轴、
轴于点
,点
,且
、
满足
.
(1)求
,
的值;
(2)以
为边作
,点
在直线
的右侧且
,求点
的坐标;
(3)若(2)的点
在第四象限(如图2),
与
交于点
,
与
轴交于点
,连接
,过点
作
交
轴于点
.
①求证
;
②直接写出点
到
的距离.









(1)求


(2)以






(3)若(2)的点












①求证

②直接写出点

