- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格均为7元/kg;一次性购买超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg的部分价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为
kg(
>0)
(1)根据题意填表:a= b=
(2)设在甲批发店花费
元,在乙批发店花费
元,分别求
,
关于
的函数解析式;
(3)若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?


(1)根据题意填表:a= b=
一次购买数量(kg) | 30 | 50 | 150 | … |
甲批发店花费(元) | 180 | 300 | 900 | … |
乙批发店花费(元) | a | 350 | b | … |
(2)设在甲批发店花费





(3)若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?
如图,A(0,8)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△AP
(1)若AB∥x轴,求t的值;
(2)当t=6时,坐标平面内有一点M(不与A重合),使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标;
(3)在(2)的条件下,在x轴上是否存在点D,使O、A、B、D为顶点的四边形面积是104?如果存在,请求出点D的坐标,如果不存在,请说明理由;
(4)设点A关于x轴的对称点为A,连接A′B,在点P运动的过程中∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.
A.设P点的运动时间为t秒. |
(2)当t=6时,坐标平面内有一点M(不与A重合),使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标;
(3)在(2)的条件下,在x轴上是否存在点D,使O、A、B、D为顶点的四边形面积是104?如果存在,请求出点D的坐标,如果不存在,请说明理由;
(4)设点A关于x轴的对称点为A,连接A′B,在点P运动的过程中∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.

如图,在平面直角坐标系中,A(-4,0)、B(2,0),点C在y轴的正半轴上,且三角形ABC的面积为
.

(1)求点C的坐标.
(2)过O点作OD平行于AC交CB于点D,问:x轴上是否存在一点P,使S△PBD=
?若存在,求出点P的坐标;若不存在,请说明理由.
(3)若∠ACO=30°,射线CA绕C点以每秒3°的速度逆时针旋转到CA′,射线OB绕O点以每秒10°的速度逆时针旋转到OB′.当OB转动一周时两者都停止运动.若两射线同时开始运动,在旋转过程中,经过多长时间,CA′∥OB′?




(1)求点C的坐标.
(2)过O点作OD平行于AC交CB于点D,问:x轴上是否存在一点P,使S△PBD=

(3)若∠ACO=30°,射线CA绕C点以每秒3°的速度逆时针旋转到CA′,射线OB绕O点以每秒10°的速度逆时针旋转到OB′.当OB转动一周时两者都停止运动.若两射线同时开始运动,在旋转过程中,经过多长时间,CA′∥OB′?
如图,点A(-1,0)、B(0,3)、C(2,4)、D(3,0),点P是x轴上一点,直线CP将四边形ABCD的面积分成1:2的两部分,则P点坐标为______.

A,B两地相距200千米,甲车从A地出发匀速行驶到B地,乙车从B地出发匀速行驶到A地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x小时(0≤x≤5),甲、乙两车离A地的距离分别为y1,y2千米,y1,y2与x之间的函数关系图象如图1所示.根据图象解答下列问题:
(1)求y1,y2与x的函数关系式;
(2)乙车出发几小时后,两车相遇?相遇时,两车离A地多少千米?
(3)设行驶过程中,甲、乙两车之间的距离为s千米,在图2的直角坐标系中,已经画出了s与x之间的部分函数图象.
①图中点P的坐标为(1,m),则m= ;
②求s与x的函数关系式,并在图2中补全整个过程中s与x之间的函数图象.
(1)求y1,y2与x的函数关系式;
(2)乙车出发几小时后,两车相遇?相遇时,两车离A地多少千米?
(3)设行驶过程中,甲、乙两车之间的距离为s千米,在图2的直角坐标系中,已经画出了s与x之间的部分函数图象.
①图中点P的坐标为(1,m),则m= ;
②求s与x的函数关系式,并在图2中补全整个过程中s与x之间的函数图象.

如图1,在平面直角坐标系中,直线l1与x轴、y轴分别交于点A(3,0)、B(0,2).
(1)如图2,点M是AB的中点,过点M作ME⊥x轴,MF⊥y轴,垂足分别为E、F.则点M 的坐标为 ;
(2)如图3,直线l2经过点B,且与l1互相垂直,过点C(0,﹣1)作CD⊥y轴,交l2于点D.则以直线l2为图像的函数表达式为 ;
(3)图1中,在x轴上是否存在点P,使得△APB是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.
(1)如图2,点M是AB的中点,过点M作ME⊥x轴,MF⊥y轴,垂足分别为E、F.则点M 的坐标为 ;
(2)如图3,直线l2经过点B,且与l1互相垂直,过点C(0,﹣1)作CD⊥y轴,交l2于点D.则以直线l2为图像的函数表达式为 ;
(3)图1中,在x轴上是否存在点P,使得△APB是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.

小玲和弟弟小东分别从家和图书馆同时当发,沿同一条路相向而行,小玲开始跑步,中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数函象如图所示.
(1)家与图书馆之间的路程为 m,小东从图书馆到家所用的时间为 .
(2)求小玲步行时y与x之间的函数关系式
(3)求两人相遇的时间.
(1)家与图书馆之间的路程为 m,小东从图书馆到家所用的时间为 .
(2)求小玲步行时y与x之间的函数关系式
(3)求两人相遇的时间.

如图,直线y=﹣x+4与两坐标轴交于P,Q两点,在线段PQ上有一动点A(点A不与P,Q重合),过点A分别作两坐标轴的垂线,垂足为B,C,则下列说法不正确的是( )


A.点A的坐标为(2,2)时,四边形OBAC为正方形 |
B.在整个运动过程中,四边形OBAC的周长保持不变 |
C.四边形OBAC面积的最大值为4 |
D.当四边形OBAC的面积为3时,点A的坐标为(1,3) |
如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点

A.过点C且与y=2x平行的直线交y轴于点 | B. (1)求直线CD的解析式; (2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围. |

小张到老王的果园里一次性采购一种水果,他俩商定:小张的采购价
(元/吨)与采购量
(吨)之间函数关系的图象如图中的折线段
所示(不包含端点
,但包含端点
).
(1)求
与
之间的函数关系式,并写出
的取值范围;
(2)已知老王种植水果的成本是
元/吨,那么小张的采购量为多少时,老王在这次买卖中所获的利润
最大?最大利润是多少?





(1)求



(2)已知老王种植水果的成本是


