- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,图中
,
分别表示两人的路程与小明追赶时间的关系.

(1)哪条线表示小明的路程与时间之间的关系?
(2)小明让小亮先跑了多少米?
(3)谁将赢得这场比赛?
(4)
对应的一次函数表达式中,一次项系数是多少?它的实际意义是什么?



(1)哪条线表示小明的路程与时间之间的关系?
(2)小明让小亮先跑了多少米?
(3)谁将赢得这场比赛?
(4)

如图,直线y=x+4与两坐标轴相交于A,B两点,点P为线段OA上的动点,连结BP,过点A作AM垂直于直线BP,垂足为M,当点P从点O运动到点A时,则点M经过的路径长为_____.

如图,直线
是一次函数
的图象,直线
是一次函数
的图象.
(1)求A、B、P三点坐标;
(2)求
的面积;
(3)已知过P点的直线把
分成面积相等的两部分,求该直线解析式.




(1)求A、B、P三点坐标;
(2)求

(3)已知过P点的直线把


如图,在平面直角坐标系中,直线l1:y=
x+b与直线l2:y=kx+7交于点A(2,4),直线l1与x轴交于点C,与y轴交于点B,将直线l1向下平移7个单位得到直线l3,l3与y轴交于点D,与l2交于点E,连接AD.
(1)求交点E的坐标;
(2)求△ADE的面积.


(1)求交点E的坐标;
(2)求△ADE的面积.
如图,在平面直角坐标系中,直线l1的解析式为
,直线l2的解析式为
,与x轴、y轴分别交于点A、点B,直线l1与l2交于点


A.![]() ![]() (1)求点A、点B、点C的坐标,并求出△COB的面积; (2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标; (3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由. |
如图,直线y=kx﹣2与x轴,y轴分别交于B,C两点,其中OB=1.
(1)求k的值;
(2)若点A(x,y)是第一象限内的直线y=kx﹣2上的一个动点,当点A运动过程中,试写出△AOB的面积S与x的函数关系式;
(3)在(2)的条件下,探索:
①当点A运动到什么位置时,△AOB的面积是1;
②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.
(1)求k的值;
(2)若点A(x,y)是第一象限内的直线y=kx﹣2上的一个动点,当点A运动过程中,试写出△AOB的面积S与x的函数关系式;
(3)在(2)的条件下,探索:
①当点A运动到什么位置时,△AOB的面积是1;
②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.

如图,直线y=kx+6与x轴、y轴分别相交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0),点P是直线EF上的一个动点.
(1)求k的值;
(2)点P在第二象限内的直线EF上的运动过程中,写出△OPA的面积S与x的函整表达式,并写出自变量x的取值范围;
(3)探究,当点P在直线EF上运动到时,△OPA的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.
(1)求k的值;
(2)点P在第二象限内的直线EF上的运动过程中,写出△OPA的面积S与x的函整表达式,并写出自变量x的取值范围;
(3)探究,当点P在直线EF上运动到时,△OPA的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.

某种商品的日销售量y(件)与销售价x(元)之间的关系如下表,且日销售量y与销售价x之间满足一次函数关系.
(1)求y与x之间的函数关系式
(2)若该商品的进价是每件120元,商家将每件商品的销售价定为160元时,则每日销售的总利润是多少元?
x(元) | 130 | 150 | 165 |
y(件) | 70 | 50 | 35 |
(1)求y与x之间的函数关系式
(2)若该商品的进价是每件120元,商家将每件商品的销售价定为160元时,则每日销售的总利润是多少元?
如图,直线y=-
x+8与x轴、y轴分别交于点A和点B,M是OB的上的一点,若将△ABM沿M折叠,点B恰好落在x轴上的点B′处.
(1)求A、B两点的坐标;
(2)求直线AM的表达式;
(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

(1)求A、B两点的坐标;
(2)求直线AM的表达式;
(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
