- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量q(升)与行驶时间t(小时)之间的关系如图所示.

根据图象回答下列问题:
(1)小汽车行驶 小时后加油,中途加油 升;
(2)求加油前油箱余油量q与行驶时间t的函数关系式;
(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到,达目的地,油箱中的油是否够用?请说明理由.

根据图象回答下列问题:
(1)小汽车行驶 小时后加油,中途加油 升;
(2)求加油前油箱余油量q与行驶时间t的函数关系式;
(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到,达目的地,油箱中的油是否够用?请说明理由.
如图,在平面直角坐标系中,点A、B、C的坐标分别为A(0,3),B(﹣2,﹣1),C(3,0),直线BD与AC交于点D,且
,则直线BD所表示的函数表达式为



A.y=![]() ![]() | B.y=![]() ![]() | C.y=x+1 | D.y=![]() ![]() |
如图,在平面直角坐标系
中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数
,
的图象上,则tan∠ABO的值为___________




如图,在平面直角坐标系中,直线l1:y=﹣
x+2向下平移1个单位后,得到直线l2,l2交x轴于点A,点P是直线l1上一动点,过点P作PQ∥y轴交l2于点Q
(1)求出点A的坐标;
(2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;
(3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.

(1)求出点A的坐标;
(2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;
(3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.

某商店分两次购进A、B两种商品进行销售,每次购进同一种商品的进价相同,具体情况如下表所示:
(1)求A、B两种商品每件的进价分别是多少元?
(2)商店计划用5300元的资金进行第三次进货,共进A、B两种商品100件,其中要求B商品的数量不少于A商品的数量,有几种进货方案?
(3)综合考虑(2)的情况,商店计划对第三次购进的100件商品全部销售,A商品售价为30元/件,每销售一件A商品需捐款a元(1≤a≤10)给希望工程,B商品售价为100元/件,每销售一件B商品需捐款b元给希望工程,a+b=14.直接写出当b= 时,销售利润最大,最大利润为 元.
(1)求A、B两种商品每件的进价分别是多少元?
(2)商店计划用5300元的资金进行第三次进货,共进A、B两种商品100件,其中要求B商品的数量不少于A商品的数量,有几种进货方案?
(3)综合考虑(2)的情况,商店计划对第三次购进的100件商品全部销售,A商品售价为30元/件,每销售一件A商品需捐款a元(1≤a≤10)给希望工程,B商品售价为100元/件,每销售一件B商品需捐款b元给希望工程,a+b=14.直接写出当b= 时,销售利润最大,最大利润为 元.

如图,已知直线
与
轴,
轴分别交于点
,
,与直线
交于点
.点
从点
出发以每秒1个单位的速度向点
运动,运动时间设为
秒.

(1)求点
的坐标;
(2)求下列情形
的值;
①连结
,
把
的面积平分;
②连结
,若
为直角三角形.












(1)求点

(2)求下列情形

①连结



②连结


甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事,8:45才出发.甲沿相同的路线自行驾车前往,比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.
(1)点A的实际意义: ,点B坐标 ;CD= ;
(2)学校与博物馆之间的距离.
(1)点A的实际意义: ,点B坐标 ;CD= ;
(2)学校与博物馆之间的距离.

因为一次函数
与
的图象关于
轴对称,所以我们定义:函数
与互为
“镜子”函数.
(1)请直接写出函数
的“镜子”函数:________.
(2)如图,一对“镜子”函数
与
的图象交于点
,分别与
轴交于
两点,且AO=BO,△ABC的面积为
,求这对“镜子”函数的解析式.





(1)请直接写出函数

(2)如图,一对“镜子”函数







甲、乙两车间同时开始加工一批零件,从开始加工到加工完成这批零件,甲车间工作了8个小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批零件的加工任务为止.设甲、乙两车间各自加工零件的数量为
(个),甲车间加工的时间为
(时),
与
之间的函数图象如图所示.
(1)甲车间每小时加工零件的个数为_________个;这批零件的总个数为__________个;
(2)求乙车间维护设备后,乙车间加工零件的数量
与
之间的函数关系式;
(3)在加工这批零件的过程中,当甲、乙两车间共同加工完成810个零件时,求甲车间加工的时间.




(1)甲车间每小时加工零件的个数为_________个;这批零件的总个数为__________个;
(2)求乙车间维护设备后,乙车间加工零件的数量


(3)在加工这批零件的过程中,当甲、乙两车间共同加工完成810个零件时,求甲车间加工的时间.

某校计划建一间多功能数学实验室,将采购两类桌椅:A类是三角形桌,每桌可坐3人,B类是五边形桌,每桌可坐5人.学校拟选择甲、乙两家公司中的一家来采购,两家公司的标价均相同,且规定两类桌椅均只能在同一家公司采购.甲公司对两类桌椅均是以标价出售;乙公司对A类桌椅涨价20%、B类桌椅降价20%出售.经咨询,两家公司给出的数量和费用如下表:
(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?
(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?
| A类桌椅(套) | B类桌椅(套) | 总费用(元) |
甲公司 | 6 | 5 | 1900 |
乙公司 | 3 | 7 | 1660 |
(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?
(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?