- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- + 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知数轴上点
表示的数为
,点
表示的数为
,
是数轴上一点,且
,动点
从
出发,以每秒
个单位长度的速度沿数轴向左匀速运动,设运动时间为
秒.

(1)直接写出数轴上点
表示的数,并用含
的代数式表示线段
的长度;
(2)设
是
的中点,
是
的中点.点
在运动过程中,线段
的长度是否发生变化?若变化,请说出理由;若不变,求线段
的长度.
(3)动点
从点
出发,以每秒
个单位长度的速度沿数轴向左匀速运动,动点
从点
出发,以每秒
个单位长度沿数轴向左匀速运动,若
三点同时出发,当点
追上点
后立即返回向点
运动,遇到点
后则停止运动.求点
从开始运动到停止运动,行驶的路程是多少个单位长度?











(1)直接写出数轴上点



(2)设







(3)动点












小明从家里骑自行车到学校,每小时骑15km,可早到10min;每小时骑12km,就会迟到5min.问他家到学校的路程是多少千米?设他家到学校的路程为xkm,则根据题意列出的方程是 .
某客运站行车时刻表如图,若全程保持匀速行驶,则当快车出发______小时后,两车相距25km.
哈尔滨—长春 | 出发时间 | 到站时间 | 里程(km) |
普通车 | 7:00 | 11:00 | 300 |
快车 | 7:30 | 10:30 | 300 |
甲乙两地相距600千米,A、B两车分别从两地开出,A车每小时行驶60千米,B车每小时行驶48千米,若两车相向而行,A车提前1小时出发,则B车出发后_____小时相遇.
周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.
一艘轮船航行在A、B两码头之间,顺水航行用了3小时,逆水航行比顺水航行多用30分钟,轮船在静水中的速度是26千米/时,则水流速度为______千米/时.
已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边。
(1)点A所对应的数是___,点B对应的数是___;
(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数。
(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒2个单位长度,同时点N从点B出发向右运动,速度为每秒4个单位长度,设线段NO的中点为P(O原点),在运动过程中线段PO−AM的值是否变化?若不变,求其值;若变化,请说明理由。
(1)点A所对应的数是___,点B对应的数是___;
(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数。
(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒2个单位长度,同时点N从点B出发向右运动,速度为每秒4个单位长度,设线段NO的中点为P(O原点),在运动过程中线段PO−AM的值是否变化?若不变,求其值;若变化,请说明理由。
A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?