- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- + 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.

(1)数轴上点B表示的数是 ,点P表示的数是 ;(用含t的代数式表示)
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时,P、Q之间的距离恰好等于2;
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,直接写出多少秒时,P、Q之间的距离恰好等于2.

(1)数轴上点B表示的数是 ,点P表示的数是 ;(用含t的代数式表示)
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时,P、Q之间的距离恰好等于2;
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,直接写出多少秒时,P、Q之间的距离恰好等于2.
列方程解应用题:一艘轮船在甲、乙两个码头之间航行,顺水航行要3小时,逆水航行要5小时.如果轮船在静水中的速度保持不变,水流的速度为每小时8千米,求轮船在静水中的速度是每小时多少千米?
汽车上坡时每小时走28 km,下坡时每小时走35 km,去时,下坡路的路程比上坡路的路程的2倍少14 km,原路返回比去时多用了12分钟.求去时上、下坡路程分别为多少千米.
中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地。若设此人第一天走的路程为
里,依题意可列方程为_______________.


两辆汽车从相距84 km的两地同时出发相向而行,甲车的速度比乙车的速度快20 km/h,半小时后两车相遇.
(1)求乙车的速度是每小时多少千米?
(2)甲车的速度是_______ km/h;
(3)两车相遇时,甲车比乙车多行驶________千米.
(1)求乙车的速度是每小时多少千米?
(2)甲车的速度是_______ km/h;
(3)两车相遇时,甲车比乙车多行驶________千米.
小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:

(1)小强到离家最远的地方需要几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长?
(3)小强何时距家21km?(写出计算过程)

(1)小强到离家最远的地方需要几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长?
(3)小强何时距家21km?(写出计算过程)
微信运动是由腾讯开发的一个类似计步数据库的公众账号,用户可以通过关注微信运动公众号查看自己每天行走的步数,同时也可以和其他用户进行运动量的
或点赞.甲、乙两人开启了微信运动,沿湖边环形道上匀速跑步,已知乙的步距比甲的步距少
(步距是指每一步的距离),两人各跑了
圈,跑
圈前后的时刻和步数如下:
(1)求甲、乙的步距和环形道的周长;
(2)若每
分钟甲比乙多跑
步,求表中
的值.




| 出发时刻 | 出发时微信运动中显示的步数 | 结束时刻 | 结束时微信运动中显示的步数 |
甲 | ![]() | ![]() | ![]() | ![]() |
乙 | ![]() | ![]() | ![]() | ![]() |
(1)求甲、乙的步距和环形道的周长;
(2)若每



李明同学早上骑自行车上学,中途因道路施工需步行一段路,到学校共用时18分钟,他骑自行车的平均速度是300米/分钟,步行的平均速度是120米/分钟,他家离学校的距离是4500米.
(1)李明上学时骑自行车的路程和步行的路程分别为多少米?
(2)放学后李明从17:40开始离校回家,但此时道路施工的地段增长了600米,如果按照上学时的速度,问李明能否在18:00之前到家?请通过计算说明.
(1)李明上学时骑自行车的路程和步行的路程分别为多少米?
(2)放学后李明从17:40开始离校回家,但此时道路施工的地段增长了600米,如果按照上学时的速度,问李明能否在18:00之前到家?请通过计算说明.
已知甲沿周长为300米的环形跑道上按逆时针方向跑步,速度为a米/秒,与此同时在甲后面100米的乙也沿该环形跑道按逆时针方向跑步,速度为3米/秒.设运动时间为t秒.

(1)若a=5,求甲、乙两人第1次相遇的时间;
(2)当t=50时,甲、乙两人第1次相遇.
①求a的值;
②若
时,甲、乙两人第1次相遇前,当两人相距120米时,求
的值.

(1)若a=5,求甲、乙两人第1次相遇的时间;
(2)当t=50时,甲、乙两人第1次相遇.
①求a的值;
②若


王明从家去学校,若以每小时6千米的速度奔跑,则早到15分钟,若以每小时3千米的速度走路,则迟到5分钟。设规定时间为x小时,列出方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |