- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- + 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知多项式(a2﹣16)x2+(a+4)x+4a是关于x的一次多项式,且常数项为b,a、b分别对应着数轴上的A、B两点.

(1)a= ,b= ;
(2)若点P从点A出发,以每秒3个单位长度的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的3倍;
(3)数轴上还有一点C表示的数为40,若点P和点Q同时从点A和点B出发,分别以每秒4个单位长度和每秒2个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,求运动多少秒时,P、Q两点之间的距离为6.

(1)a= ,b= ;
(2)若点P从点A出发,以每秒3个单位长度的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的3倍;
(3)数轴上还有一点C表示的数为40,若点P和点Q同时从点A和点B出发,分别以每秒4个单位长度和每秒2个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,求运动多少秒时,P、Q两点之间的距离为6.
已知A、B在数轴上对应的数分别用+2、﹣6表示,P是数轴上的一个动点.

(1)数轴上A、B两点的距离为 .
(2)当P点满足PB=2PA时,求P点表示的数.
(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.
①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则ko的值是多少?
②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是 (请直接写答案).

(1)数轴上A、B两点的距离为 .
(2)当P点满足PB=2PA时,求P点表示的数.
(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.
①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则ko的值是多少?
②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是 (请直接写答案).
在多项式
中,
表示这个多项式的项数,
表示这个多项式中三次项的系数.在数轴上点
与点
所表示的数恰好可以用
与
分别表示.有一个动点
从点
出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为
秒.
(1)
________,
___________,线段
_________个单位长度;
(2)点
所表示数是________(用含
的多项式表示);
(3)求当
为多少时,线段
的长度恰好是线段
长度的三倍?










(1)



(2)点


(3)求当



如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.

已知,点A、B、O在数轴上对应的数为a、b、0,且满足|a+8|+(b﹣12)2=0,点M、N分别从O、B出发,同时向左匀速运动,M的速度为1个单位长度每秒,N的速度为3个单位长度每秒,A、B之间的距离定义为:AB=|a﹣b|.
(1)直接写出OA= .OB= ;
(2)设运动的时间为t秒,当t为何值时,恰好有AN=2AM;
(3)若点P为线段AM的中点,Q为线段BN的中点,M、N在运动的过程中,PQ+MN的长度是否发生变化?若不变,请说明理由,若变化,当t为何值时,PQ+MN有最小值?最小值是多少?
(1)直接写出OA= .OB= ;
(2)设运动的时间为t秒,当t为何值时,恰好有AN=2AM;
(3)若点P为线段AM的中点,Q为线段BN的中点,M、N在运动的过程中,PQ+MN的长度是否发生变化?若不变,请说明理由,若变化,当t为何值时,PQ+MN有最小值?最小值是多少?
如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C 在数轴上相距 28 个长度单位,动点P 从点A 出发,以 2 单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半;点P 从点A 出发的同时,点Q 从点C 出发,以 1 单位秒的速度沿着“折线数轴”的负方向运动,当点P 到达B 点时,点P、Q 均停止运动. 设运动的时间为 t 秒. 问:

(1)当 t=3s 时,点P 和点O 在数轴上相距 个长度单位;当 t=7.5s 时,点P 和点O 在数轴上相距 个长度单位;当 t=9s 时,点P 和点Q 在数轴上相距 个长度单位.
(2)当P、Q 两点相遇时,求出相遇时间及相遇点 M 所对应的数是多少?
(3)是否存在某一时刻使得P、O 两点在数轴上相距的长度与Q、B 两点在数轴上相距的长度相等?若存在,请直接写出 t 的取值;若不存在,请说明理由.

(1)当 t=3s 时,点P 和点O 在数轴上相距 个长度单位;当 t=7.5s 时,点P 和点O 在数轴上相距 个长度单位;当 t=9s 时,点P 和点Q 在数轴上相距 个长度单位.
(2)当P、Q 两点相遇时,求出相遇时间及相遇点 M 所对应的数是多少?
(3)是否存在某一时刻使得P、O 两点在数轴上相距的长度与Q、B 两点在数轴上相距的长度相等?若存在,请直接写出 t 的取值;若不存在,请说明理由.
在同一直线上的三点A,B,C,若满足点C到另两个点A,B的距离之比是2,则称点C是其余两点的亮点(或暗点).具体地,当点C在线段AB上时,若
=2,则称点C是[A,B]的亮点;若
=2,则称点C是[B,A]的亮点;当C在线段AB的延长线上时,若
=2,称点C是[A,B]的暗点.例如,如图1,数轴上点A,B,C,D分别表示数﹣1,2,1,0.则点C是[A,B]的亮点,又是[A,D]的暗点;点D是[B,A]的亮点,又是[B,C]的暗点

(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
[M,N]的亮点表示的数是 ,[N,M]的亮点表示的数是 ;
[M,N]的暗点表示的数是 ,[N,M]的暗点表示的数是 ;
(2)如图3,数轴上点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.
①求当t为何值时,P是[B,A]的暗点;
②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点.




(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
[M,N]的亮点表示的数是 ,[N,M]的亮点表示的数是 ;
[M,N]的暗点表示的数是 ,[N,M]的暗点表示的数是 ;
(2)如图3,数轴上点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.
①求当t为何值时,P是[B,A]的暗点;
②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点.
用一根长12米的铁丝围成一个长方形.
(1)使得该长方形的长比宽多2米,此时长方形的长、宽各为多少米?面积为多少?
(2)使得长方形的长比宽多1.6米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围成长方形相比,面积有什么变化?
(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中的长方形面积相比又有什么变化?
(1)使得该长方形的长比宽多2米,此时长方形的长、宽各为多少米?面积为多少?
(2)使得长方形的长比宽多1.6米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围成长方形相比,面积有什么变化?
(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中的长方形面积相比又有什么变化?
如图1,已知面积为12的长方形ABCD,一边AB在数轴上。点A表示的数为—2,点B表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为t(t>0)秒.

(1)长方形的边AD长为 单位长度;
(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;
(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P点出发时间相同。那么当三角形BDQ,三角形BPC两者面积之差为
时,直接写出运动时间t 的值.

(1)长方形的边AD长为 单位长度;
(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;
(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P点出发时间相同。那么当三角形BDQ,三角形BPC两者面积之差为
