- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- + 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知数轴上两点
、
对应的数分别为-1,3,点
为数轴上一动点,其对应的数为
,当
到点
、
的距离之和为7时,则对应的数
的值为( )








A.![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
如图所示,两人沿着边长为90 m的正方形,按A→B→C→D→A…的方向行走,甲从A点以65 m/min的速度、乙从B点以75 m/min的速度行走,当乙第一次追上甲时,将在正方形的( )边上.


A.BC | B.DC |
C.AD | D.AB |
小明用8个完全相同的小长方形拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形;图案甲的中间留下了边长是1的正方形小洞.
(1)设每个小长方形的宽为x,由图乙可知每个小长方形的长可表示为 .
(2)求小长方形的长和宽.
(1)设每个小长方形的宽为x,由图乙可知每个小长方形的长可表示为 .
(2)求小长方形的长和宽.

已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;

(1)求a、b、c的值;
(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;
(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?

(1)求a、b、c的值;
(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;
(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?
如图,数轴的单位长度为1.

(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是 、 ;
(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;
(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?

(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是 、 ;
(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;
(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?
如图,点A从原点O出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,5秒后,两点相距15个单位长度,已知点B的速度是点A的速度的2倍(速度单位:单位长度/秒)

(1)求出点A、点B运动的速度;并在数轴上标出A、B两点从原点O出发运动5秒时的位置.
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,
①再过几秒,A、B两点重合?
②再过几秒,可以让A、B、O三点中一点是另外两点所成线段的中点?

(1)求出点A、点B运动的速度;并在数轴上标出A、B两点从原点O出发运动5秒时的位置.
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,
①再过几秒,A、B两点重合?
②再过几秒,可以让A、B、O三点中一点是另外两点所成线段的中点?
阅读下面材料:


点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=
=∣a-b∣;如图3,当点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=
=∣a-b∣;如图4,当点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣=
=∣a-b∣.
回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是______.
(2)数轴上若点A表示的数是x,点B表示的数是-2,则点A和B之间的距离是_____,若∣AB∣=2,那么x为______.
(3)当x是_____时,代数式
.
(4)若点A表示的数是-1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒
个单位长度,求运动几秒后,点P与点Q之间的距离为5个单位长度?(请写出必要的求解过程)




点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=



回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是______.
(2)数轴上若点A表示的数是x,点B表示的数是-2,则点A和B之间的距离是_____,若∣AB∣=2,那么x为______.
(3)当x是_____时,代数式

(4)若点A表示的数是-1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒

已知数轴上顺次有
、
、
三点,分别表示数
、
、
,并且满足
,
与
互为相反数.一只电子小蜗牛从
点向正方向移动,速度为2个单位/秒.
(1)请求出
、
、
三点分别表示的数.
(2)运动多少秒时,小蜗牛到点
的距离为1个单位长度.
(3)设点
在数轴上点A的右边,且点
分别到点
、点
、点
的距离之和是20,那么点
所表示的数是_____.










(1)请求出



(2)运动多少秒时,小蜗牛到点

(3)设点






如图,已知数轴上点
表示的数为
,点
表示的数为
,点
到点
,点
的距离相等,动点
从点
出发,以每秒
个单位长度的速度沿数轴向右匀速运动,设运动的时间为
(
)秒.

(1)点
表示的数是 .
(2)点
表示的数是 .(用含有
的代数式表示);
(3)求当
等于多少秒时,点
与点
之间的距离为
个单位长度.













(1)点

(2)点


(3)求当




已知a是最大的负整数,b、c满足
,且a,b,c分别是点A,B,C在数轴上对应的数.
(1)求a,b,c的值,并在数轴上标出点A,B,C;

(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?
(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)

(1)求a,b,c的值,并在数轴上标出点A,B,C;

(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?
(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)