- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列表述正确的是( )
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;
③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;
⑤类比推理是由特殊到特殊的推理.
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;
③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;
⑤类比推理是由特殊到特殊的推理.
A.①④⑤ | B.②③④ | C.②③⑤ | D.①⑤ |
下面几种推理是演绎推理的个数是( )
①两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°;
②猜想数列1,3,5,7,9,11,…的通项公式为
;
③由正三角形的性质得出正四面体的性质;
④半径为
的圆的面积
,则单位圆的面积
.
①两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°;
②猜想数列1,3,5,7,9,11,…的通项公式为

③由正三角形的性质得出正四面体的性质;
④半径为



A.1个 | B.2个 | C.3个 | D.4个 |
下列说法:①归纳推理是合情推理;②类比推理不是合情推理;③演绎推理在前提和推理形式都正确的前提下,得到的结论是正确的.其中正确说法的个数为( )
A.![]() | B.![]() | C.![]() | D.![]() |
下列推理过程不是演绎推理的是( )
①一切奇数都不能被2整除,2019是奇数,2019不能被2整除;
②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;
③在数列
中,
,由此归纳出
的通项公式;
④由“三角形内角和为
”得到结论:直角三角形内角和为
.
①一切奇数都不能被2整除,2019是奇数,2019不能被2整除;
②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;
③在数列



④由“三角形内角和为


A.①② | B.③④ | C.②③ | D.②④ |
下列推理过程是类比推理的为()
A.人们通过大量试验得出抛硬币出现正面的概率为![]() |
B.科学家通过研究老鹰的眼睛发明了电子鹰眼 |
C.通过检验溶液的![]() |
D.数学中由周期函数的定义判断某函数是否为周期函数 |
关于下列说法:
①由平面三角形的性质推测空间四面体的性质,这是一种合情推理;
②归纳推理得到的结论不一定正确,类比推理得到的结论一定正确;
③演绎推理是由特殊到特殊的推理;
④演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.
其中正确的是____________.(填所有正确说法的序号)
①由平面三角形的性质推测空间四面体的性质,这是一种合情推理;
②归纳推理得到的结论不一定正确,类比推理得到的结论一定正确;
③演绎推理是由特殊到特殊的推理;
④演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.
其中正确的是____________.(填所有正确说法的序号)
下列推理属于合情推理的是__________ .
①由平面三角形的性质推测空间三棱锥的性质
②由“正方形面积为边长的平方”得出结论:正方体的体积为棱长的立方
③两条直线平行,同位角相等,若
与
是两条平行直线的同位角,则
④在数列
中,
,
,猜想
的通项公式
①由平面三角形的性质推测空间三棱锥的性质
②由“正方形面积为边长的平方”得出结论:正方体的体积为棱长的立方
③两条直线平行,同位角相等,若



④在数列




下面几种推理过程是演绎推理的是( )
A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人 |
B.根据三角形的性质,可以推测空间四面体的性质 |
C.平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分 |
D.在数列![]() ![]() ![]() ![]() |