题库 高中数学

题干

如图☆的曲线,其生成方法是(I)将正三角形(图(1))的每边三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边,得到图(2);(II)将图(2)的每边三等分,重复上述的作图方法,得到图(3);(III)再按上述方法继续做下去,所得到的曲线称为雪花曲线(Koch Snowflake),
(1)(2)(3).
设图(1)的等边三角形的边长为1,并且分别将图(1)、(2)、(3)…中的图形依次记作M1M2M3、…
(1)设中的边数为中每条边的长度为,写出数列的递推公式与通项公式;
(2)设的周长为所围成的面积为,求数列{}与{}的通项公式;请问周长与面积的极限是否存在?若存在,求出该极限,若不存在,简单说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-11 01:20:25

答案(点此获取答案解析)