- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图:正方体
,棱长为1,黑白二蚁都从点
出发,沿棱向前爬行,每走一条棱称为“走完一段”.白蚁爬行的路线是
黑蚁爬行的路线是
它们都遵循如下规则:所爬行的第
段所在直线与第
段所在直线必须是异面直线(其中
).设黑白二蚁走完第2014段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是 ( )









A.1 | B.![]() | C.![]() | D.0 |
平面上有n条直线,它们任何两条不平行,任何三条不共点,设
条这样的直线把平面分成
个区域,则
条直线把平面分成的区域数
____________ .




(东北三省四市教研联合体2018届高三第二次模拟考试)中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”取意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算.算筹是将几寸长的小竹棍摆在下面上进行运算.算筹的摆放形式有纵横两种形式(如下图所示).表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.依此类推.例如3266用算筹表示就是
,则8771用算筹可表示为

中国古代的算筹数码


中国古代的算筹数码
A.![]() | B.![]() |
C.![]() | D.![]() |
某次数学测试共有4道题目,若某考生答对的题大于全部题的一半,则称他为“学习能手”,对于某个题目,如果答对该题的“学习能手”不到全部“学习能手”的一半,则称该题为“难题”.已知这次测试共有5个“学习能手”,则“难题”的个数最多为
A.4 | B.3 | C.2 | D.1 |
若
内切圆半径为
,三边长为
,则
的面积
,根据类比思想,若四面体内切球半径为
,四个面的面积为
,
,
,
,则四面体的体积为_______________________










为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为
,传输信息为
,其中
,
,
运算规则为:
,
,
,
.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( )









A.01100 | B.11010 | C.10110 | D.11000 |
取数游戏:每次游戏中,游戏人按动游泳按钮,就从如图:
的三个窗口中各弹出一个数字,其中:最左边窗口可随机弹出数字4或3,中间窗口可随机弹出3或2,最右边窗口可随机弹出2或1.若弹出的三个数字为“顺子”(如:432),则可获奖10元,若有相邻两位数字相同,则可获奖8元,其他情况获奖-2元.甲玩了8次游戏后,乙问甲的获奖情况,甲说:“23元有余,28元不足,3除不尽.”那么甲在这8次游戏中得到“顺子”、“相邻两位数字相同”、“其他情况”的次数依次为( )

A.0,4,4 | B.2,2,4 | C.2,3,3 | D.1,3,4 |
在2018年石嘴山市高中生研究性学习课题展示活动中,甲、乙、丙代表队中只有一个队获得一等奖,经询问,丙队代表说:“甲代表队没得—等奖”;乙队代表说:“我们队得了一等奖”;甲队代表说:“丙队代表说的是真话”。事实证明,在这三个代表的说法中,只有一个说的是假话,那么获得一等奖的代表队是( )
A.甲代表队 | B.乙代表队 | C.丙代表队 | D.无法判断 |