刷题首页
题库
高中数学
题干
若
内切圆半径为
,三边长为
,则
的面积
,根据类比思想,若四面体内切球半径为
,四个面的面积为
,
,
,
,则四面体的体积为_______________________
上一题
下一题
0.99难度 填空题 更新时间:2018-04-28 04:43:01
答案(点此获取答案解析)
同类题1
在讨论勾股定理的过程中,《九章算术》提供了许多整勾股数,如
,等等.其中最大的数称为“弦数”,后人在此基础上进一步研究,得到如下规律:若勾股数组中的某一个数
是确定的奇数(大于1),把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数,称之为“由
生成的一组勾股数”.则“由17生成的这组勾股数”的“弦数”为_______________.
同类题2
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若
a
,
b
,
c
为直角三角形的三边,其中
c
为斜边,则
a
2
+
b
2
=
c
2
,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体
O
-
ABC
中,∠
AOB
=∠
BOC
=∠
COA
=90°,
S
为顶点
O
所对面的面积,
S
1
,
S
2
,
S
3
分别为侧面△
OAB
,△
OAC
,△
OBC
的面积,则下列选项中对于
S
,
S
1
,
S
2
,
S
3
满足的关系描述正确的为( )
A.
S
2
=
S
+
S
+
S
B.
C.
S
=
S
1
+
S
2
+
S
3
D.
同类题3
给出下列一组函数:
,
,
,
,…,请你通过研究以上所给的四个函数解析式具有的特征,写出一个类似的函数解析式
:__________.
同类题4
(1)求证:椭圆
中斜率为
的平行弦的中点轨迹必过椭圆中心;
(2)用作图方法找出下面给定椭圆的中心;
(3)我们把由半椭圆
与半椭圆
合成的曲线称作“果圆”,其中
,
,
.如图,设点
,
,
是相应椭圆的焦点,
,
和
,
是“果圆” 与
,
轴的交点. 连结“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数
,使斜率为
的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的
值,若不存在,说明理由.
同类题5
下面使用类比推理正确的是( )
A.直线
a
∥
b
,
b
∥
c
,则
a
∥
c
,类推出:向量
,则
B.同一平面内,直线
a
,
b
,
c
,若
a
⊥
c
,
b
⊥
c
,则
a
∥
b
.类推出:空间中,直线
a
,
b
,
c
,若
a
⊥
c
,
b
⊥
c
,则
a
∥
b
C.实数
a
,
b
,若方程
x
2
+
ax
+
b
=0有实数根,则
a
2
≥4
b
.类推出:复数
a
,
b
,若方程
x
2
+
ax
+
b
=0有实数根,则
a
2
≥4
b
D.以点(0,0)为圆心,
r
为半径的圆的方程为
x
2
+
y
2
=
r
2
.类推出:以点(0,0,0)为球心,
r
为半径的球的方程为
x
2
+
y
2
+
z
2
=
r
2
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比