- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的均值
- 超几何分布的均值
- + 二项分布的均值
- 均值的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某超市采购了一批袋装的进口牛肉干进行销售,共1000袋,每袋成本为30元,销售价格为50元,经过科学测定,每袋牛肉干变质的概率为
,且各袋牛肉干是否变质相互独立.依据消费者权益保护法的规定:超市出售变质食品的,消费者可以要求超市退一赔三.为了保护消费者权益,针对购买到变质牛肉干的消费者,超市除退货外,并对每袋牛肉干以销售价格的三倍现金赔付,且把变质牛肉干做废物处理,不再进行销售.
(1)若销售完这批牛肉干后得到的利润为X,且
,求p的取值范围;
(2)已知
,若超市聘请兼职员工来检查这批牛肉干是否变质,超市需要支付兼职员工工资5000元,这样检查到的变质牛肉干直接当废物处理,就不会流入到消费者手中.请以超市获取的利润为决策依据,判断超市是否需要聘请兼职员工来检验这批牛肉干是否变质?

(1)若销售完这批牛肉干后得到的利润为X,且

(2)已知

时值金秋十月,正是秋高气爽,阳光明媚的美好时刻。复兴中学一年一度的校运会正在密锣紧鼓地筹备中,同学们也在热切地期盼着,都想为校运会出一份力。小智同学则通过对学校有关部门的走访,随机地统计了过去许多年中的五个年份的校运会“参与”人数及相关数据,并进行分析,希望能为运动会组织者科学地安排提供参考。
附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字1、2、3、4、5表示小智同学统计的五个年份的年份数,今年的年份数是6;
统计表(一)
统计表(二)
高一(3)(4)班参加羽毛球比赛的情况:
(1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程
,并预估今年的校运会的“参与”人数;
(2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量
,试求随机变量
的分布列、期望
和方差
;
(3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?
参考公式和数据一:
,
,
,
参考公式二:
,其中
.
参考数据:
附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字1、2、3、4、5表示小智同学统计的五个年份的年份数,今年的年份数是6;
统计表(一)
年份数x | 1 | 2 | 3 | 4 | 5 |
“参与”人数(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
统计表(二)
高一(3)(4)班参加羽毛球比赛的情况:
| 男生 | 女生 | 小计 |
参加(人数) | 26 | b | 50 |
不参加(人数) | c | 20 | |
小计 | | 44 | 100 |
(1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程

(2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量




(3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?
参考公式和数据一:




参考公式二:


参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
![]() | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同.每次游戏需要从这两个箱子里面各随机摸出两个球.
(1)设在一次游戏中,摸出红球的个数为
,求
分布列.
(2)若在一次游戏中,摸出的红球不少于2个,则获奖.
①求一次游戏中,获奖的概率;
②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为
,求
的数学期望
.
(1)设在一次游戏中,摸出红球的个数为


(2)若在一次游戏中,摸出的红球不少于2个,则获奖.
①求一次游戏中,获奖的概率;
②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为



为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.

(1)估计这200名学生健康指数的平均数
和样本方差
(同一组数据用该组区间的中点值作代表);
(2)由频率分布直方图知,该市学生的健康指数
近似服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
①求
;
②已知该市高三学生约有10000名,记体质健康指数在区间
的人数为
,试求
.
附:参考数据
,
若随机变量
服从正态分布
,则
,
,
.

(1)估计这200名学生健康指数的平均数


(2)由频率分布直方图知,该市学生的健康指数






①求

②已知该市高三学生约有10000名,记体质健康指数在区间



附:参考数据

若随机变量





甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为
和
.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.
(1)用
表示甲同学连续三次答题中答对的次数,求随机变量
的分布列和数学期望;
(2)设
为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件
发生的概率.


(1)用


(2)设


随着现代科技的不断发展,通过手机交易应用越来越广泛,其中某群体的每位成员使用微信支付的概率都为
,各成员的支付方式相互独立,设
为该群体的10位成员中使用微信支付的人数,已知方差
,
,则期望
()





A.4 | B.5 | C.6 | D.7 |
某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房面积
(单位:平方米,
)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价
(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年6月至2019年6月)

(1)试估计该市市民的平均购房面积
(同一组中的数据用该组区间的中点值为代表);
(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为
,求
的分布列与数学期望;
(3)根据散点图选择
和
两个模型讲行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值,如表所示:
请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).
参考数据:
,
,
,
,
,
参考公式:




(1)试估计该市市民的平均购房面积

(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为


(3)根据散点图选择




| ![]() | ![]() |
![]() | 0.005459 | 0.005886 |
![]() | 0.006050 |
请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).
参考数据:






参考公式:

某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布
.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:
这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为
.(同组中的身高数据用该组区间的中点值作代表):
(1)求
,
;
(2)给出正态分布的数据:
,
.
(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;
(ii)若从这10万名学生中随机抽取1万名,记
为这1万名学生中身高在(169,184)的人数,求
的数学期望.

分组 | [160,166) | [166,172) | [172,178) | [178,184) | [184,190] |
人数 | 3 | 10 | 24 | 10 | 3 |
这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为

(1)求


(2)给出正态分布的数据:


(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;
(ii)若从这10万名学生中随机抽取1万名,记

