某超市采购了一批袋装的进口牛肉干进行销售,共1000袋,每袋成本为30元,销售价格为50元,经过科学测定,每袋牛肉干变质的概率为,且各袋牛肉干是否变质相互独立.依据消费者权益保护法的规定:超市出售变质食品的,消费者可以要求超市退一赔三.为了保护消费者权益,针对购买到变质牛肉干的消费者,超市除退货外,并对每袋牛肉干以销售价格的三倍现金赔付,且把变质牛肉干做废物处理,不再进行销售.
(1)若销售完这批牛肉干后得到的利润为X,且,求p的取值范围;
(2)已知,若超市聘请兼职员工来检查这批牛肉干是否变质,超市需要支付兼职员工工资5000元,这样检查到的变质牛肉干直接当废物处理,就不会流入到消费者手中.请以超市获取的利润为决策依据,判断超市是否需要聘请兼职员工来检验这批牛肉干是否变质?
当前题号:1 | 题型:解答题 | 难度:0.99
时值金秋十月,正是秋高气爽,阳光明媚的美好时刻。复兴中学一年一度的校运会正在密锣紧鼓地筹备中,同学们也在热切地期盼着,都想为校运会出一份力。小智同学则通过对学校有关部门的走访,随机地统计了过去许多年中的五个年份的校运会“参与”人数及相关数据,并进行分析,希望能为运动会组织者科学地安排提供参考。
附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字1、2、3、4、5表示小智同学统计的五个年份的年份数,今年的年份数是6;
统计表(一)
年份数x
1
2
3
4
5
“参与”人数(y千人)
1.9
2.3
2.0
2.5
2.8
 
统计表(二)
高一(3)(4)班参加羽毛球比赛的情况:
 
男生
女生
小计
参加(人数)
26
b
50
不参加(人数)
c
20
 
小计
 
44
100
 
(1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程,并预估今年的校运会的“参与”人数;
(2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量,试求随机变量的分布列、期望和方差
(3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?
参考公式和数据一:
参考公式二:,其中
参考数据:

0.50
0.40
0.25
0.05
0.025
0.010

0.455
0.708
1.323
3.841
5.024
6.635
 
当前题号:2 | 题型:解答题 | 难度:0.99
某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同.每次游戏需要从这两个箱子里面各随机摸出两个球.
(1)设在一次游戏中,摸出红球的个数为,求分布列.
(2)若在一次游戏中,摸出的红球不少于2个,则获奖.
①求一次游戏中,获奖的概率;
②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为,求的数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.

(1)估计这200名学生健康指数的平均数和样本方差(同一组数据用该组区间的中点值作代表);
(2)由频率分布直方图知,该市学生的健康指数近似服从正态分布,其中近似为样本平均数近似为样本方差.
①求
②已知该市高三学生约有10000名,记体质健康指数在区间的人数为,试求.
附:参考数据
若随机变量服从正态分布,则,.
当前题号:4 | 题型:解答题 | 难度:0.99
甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.
(1)用表示甲同学连续三次答题中答对的次数,求随机变量的分布列和数学期望;
(2)设为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件发生的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
随着现代科技的不断发展,通过手机交易应用越来越广泛,其中某群体的每位成员使用微信支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用微信支付的人数,已知方差,则期望()
A.4B.5C.6D.7
当前题号:6 | 题型:单选题 | 难度:0.99
某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房面积(单位:平方米,)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年6月至2019年6月)

(1)试估计该市市民的平均购房面积(同一组中的数据用该组区间的中点值为代表);
(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为,求的分布列与数学期望;
(3)根据散点图选择两个模型讲行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值,如表所示:
 



0.005459
0.005886

0.006050
 
请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).
参考数据:
参考公式:
当前题号:7 | 题型:解答题 | 难度:0.99
从装有除颜色外完全相同的个白球和个黑球的布袋中随机摸取一球,有放回地摸取次,设摸得黑球的个数为,已知,则等于(  )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:
分组
[160,166)
[166,172)
[172,178)
[178,184)
[184,190]
人数
3
10
24
10
3
 
这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为.(同组中的身高数据用该组区间的中点值作代表):
(1)求
(2)给出正态分布的数据:.
(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;
(ii)若从这10万名学生中随机抽取1万名,记为这1万名学生中身高在(169,184)的人数,求的数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
已知随机变量满足下列分布列,当且不断增大时,()

0
1
2




 
A.增大,增大
B.减小,减小
C.增大,先增大后减小
D.增大,先减小后增大
当前题号:10 | 题型:单选题 | 难度:0.99