(山东省烟台市2018届适应性练习(二))某房产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:

(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).
(3)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为,获得“二等奖”的概率为,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.
参考数据:.
参考公式:
当前题号:1 | 题型:解答题 | 难度:0.99
电动化是汽车工业未来发展的大趋势,在国家的节能减排、排放法规等硬性要求之下,新能源汽车乘势而起,来自中国汽车工业协会的统计数据显示,2018年新能源汽车累计销量已经超过100万辆,意味着我国的新能源汽车市场的正式兴起.某人计划购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到2018年1月到5月的实际销量如下表:
月份(
1
2
3
4
5
销量(,单位:辆)
500
600
1000
1400
1700
 
(1)经分析发现,可用线性回归模型拟合当地该品牌新能源汽车实际销量(辆)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并据此预测2018年10月份当地该品牌新能源汽车的销量;
(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程对购车补贴进行新一轮调整.下表为2018年执行的补贴政策.
最大续航里程(单位:km)
补贴金额(单位:万元)

1.50

2.40

3.40

4.50

5.00
 
某企业一次采购了6辆电动汽车,已知其中有2辆最大续航里程,其余车辆的最大续航里程,若从这6辆车中任取3辆,求这3辆车的补贴金额之和的分布列和数学期望.
参考公式:回归方程,其中.参考数据:
当前题号:2 | 题型:解答题 | 难度:0.99
(2018届陕西省高三教学质量检测)某高中随机抽取部分高一学生调查其上学路上所需的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为

(1)求直方图中的值;
(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;
(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率)
当前题号:3 | 题型:解答题 | 难度:0.99
树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率;
(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注环境治理和保护问题的人数为随机变量,求的分布列与数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
为推行“新课堂”教学法,某老师分别用传统教学和“新课堂”两种不同的教学方式在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,若成绩大于70分为“成绩优良”.

(1)分别计算甲、乙两班的样本中,前10名成绩的平均分,并据此判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
 
甲班
乙班
总计
成绩优良
 
 
 
成绩不优良
 
 
 
总计
 
 
 
 
(3)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记ξ为所抽取的2人中来自乙班的人数,求ξ的分布列及数学期望.
附:K2=(n=a+b+c+d),
P(K2k0)
0.10
0.05
0.025
0.010
k0
2.706
3.841
5.024
6.635
 
当前题号:5 | 题型:解答题 | 难度:0.99
由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:
 
现有一场比赛,派哪位运动员参加较好?(  )
A.甲B.乙C.甲、乙均可D.无法确定
当前题号:6 | 题型:单选题 | 难度:0.99
为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

(Ⅰ)求的值;
(Ⅱ)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;
(Ⅲ)在抽取的名学生中,规定:比赛成绩在内为“良好”.现采用分层抽样的方法先从比赛成绩良好的学生中抽取名学生,然后从这名学生中随机抽取名学生,记比赛成绩在内的学生人数为,求的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
手机运动计步已经成为一种新时尚.某单位统计职工一天行走步数(单位:百步)得到如下频率分布直方图:

由频率分布直方图估计该单位职工一天行走步数的中位数为(百步),其中同一组中的数据用该组区间的中点值为代表.
(1)试计算图中的ab值,并以此估计该单位职工一天行走步数的平均值
(2)为鼓励职工积极参与健康步行,该单位制定甲、乙两套激励方案:
记职工个人每日步行数为,其超过平均值的百分数,若,职工获得一次抽奖机会;若,职工获得二次抽奖机会;若,职工获得三次抽奖机会;若,职工获得四次抽奖机会;若超过,职工获得五次抽奖机会.设职工获得抽奖次数为.方案甲:从装有个红球和个白球的口袋中有放回的抽取个小球,抽得红球个数及表示该职工中奖几次;方案乙:从装有个红球和个白球的口袋中无放回的抽取个小球,抽得红球个数及表示该职工中奖几次;若某职工日步行数为步,试计算他参与甲、乙两种抽奖方案中奖次数的分布列.若是你,更喜欢哪个方案?
当前题号:8 | 题型:解答题 | 难度:0.99
(本小题满分12分)下图是某市今年1月份前30天空气质量指数(AQI)的趋势图.

(1)根据该图数据在答题卷中完成频率分布表,并在图中作出这些数据的频率分布直方图;

(图中纵坐标1/300即,以此类推)
(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月1日至10日中的某一
天到达该市,并停留2天,设是此人停留期间空气质量优良的天数,求的数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
(本小题满分12分)
由于我市去年冬天多次出现重度污染天气,市政府决定从今年3月份开始进行汽车尾气的整治,为降低汽车尾气的排放量,我市某厂生产了甲、乙两种不同型号的节排器,分别从两种节排器中随机抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.

节排器等级如表格所示
综合得分K的范围
节排器等级

一级品

二级品

三级品
 
若把频率分布直方图中的频率视为概率,则
(1)如果从甲型号中按节排器等级用分层抽样的方法抽取10件,然后从这10件中随机抽取3件,求至少有2件一级品的概率;
(2)如果从乙型号的节排器中随机抽取3件,求其二级品数的分布列及数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99