为调查某社区居民的业余生活状况,研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:
休闲方式
性别
看电视
看书
合计

10
50
60

10
10
20
合计
20
60
80
 
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,我们能否在犯错误的概率不超过0.01的前提下,认为“在20:00-22:00时间段居民的休闲方式与性别有关系”?
参考公式:K2,其中n=a+b+c+d.
参考数据:
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
 
当前题号:1 | 题型:解答题 | 难度:0.99
(本小题满分13分)某学习兴趣小组开展“学生语文成绩与英语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和英语成绩进行统计,按优秀和不优秀进行分类.记集合A={语文成绩优秀的学生},B={英语成绩优秀的学生}.如果用表示有限集合M中元素的个数.已知,
,,其中U表示800名学生组成的全集.
(1)是否有99.9%的把握认为“该校学生的语文成绩与英语成绩优秀与否有关系” ;
(2)将上述调查所得的频率视为概率,从该校高二年级的学生成绩中,有放回地随机抽取3次,记所抽取的成绩中,语文英语两科成绩中至少有一科优秀的人数为,求的分布列和数学期望.
附:
参考数据:

0.025
0.010
0.005
0.001

5.024
6.635
7.879
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)
 
立体几何题
代数题
总计
男同学
22
8
30
女同学
8
12
20
总计
30
20
50
 
(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(2)经统计得,选择做立体几何题的学生正答率为,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行研究,记抽取的两人中答对的人数为,求的分布列及数学期望.
附表及公式:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:3 | 题型:解答题 | 难度:0.99
为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(Ⅰ)完成下面的列联表,并判断是否有的把握认为平均车速超过的人与性别有关;
 
平均车数超过
人数
平均车速不超过
人数
合计
男性驾驶员人数
 
 
 
女性驾驶员人数
 
 
 
合计
 
 
 
 
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随即抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望
参考公式:,其中.
参考数据:

0.150
0.100
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:4 | 题型:解答题 | 难度:0.99
某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
(月份)
1
2
3
4
5
(万盒)
4
4
5
6
6
 
(1)该同学为了求出关于的线性回归方程,根据表中数据已经正确计算出,试求出的值,并估计该厂6月份生产的甲胶囊产量数;
(2)若某药店现有该制药厂今年二月份的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为,求的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
某中学数学老师分别用两种不同教学方式对入学数学平均分和优秀率都相同的甲、乙两个高一新班(人数均为20人)进行教学(两班的学生学习数学勤奋程度和自觉性一致),数学期终考试成绩茎叶图如下:

(1)学校规定:成绩不低于75分的优秀,请填写下面的2×2联表,并判断有多大把握认为“成绩优秀与教学方式有关”.
 
甲班
乙班
合计
优秀
  a
  b
 
不优秀
  c
  d
 
合计
 
 
 
 
附:参考公式及数据
P(x2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
K2=
(2)从两个班数学成绩不低于90分的同学中随机抽取3名,设ξ为抽取成绩不低于95分同学人数,求ξ的分布列和期望.
当前题号:6 | 题型:解答题 | 难度:0.99
某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
 
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
模型甲
估计值
 
2.4
2.1
 
1.6
残差
 
0
-0.1
 
0.1
模型乙
估计值
 
2.3
2
1.9
 
残差
 
0.1
0
0
 
 
②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:7 | 题型:解答题 | 难度:0.99
某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:

 
网购达人
非网购达人
合计
男性
 
 
30
女性
12
 
30
合计
 
 
60
 
若网购金额超过千元的顾客称为“网购达人”,网购金额不超过千元的顾客称为“非网购达人”.

(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的列联表,并判断是否有99%的把握认为“网购达人”与性别有关?

(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.

(参考公式:,其中
P()
0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
 
男性
女性
合计
反感
10
 
 
不反感
 
8
 
合计
 
 
30
 
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是.
(1)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
第11届全国人大五次会议于2012年3月5日至3月14日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(I)根据以上数据完成以下2×2列联表:
 
会俄语
不会俄语
总计

 
 
 

 
 
 
总计
 
 
30
 
并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
参考公式: ,其中n=a+b+c+d.
参考数据:
P(K2≥k0
0.40
0.25
0.10
0.010
k0
0.708
1.323
2.706
6.635
 
(II)若从会俄语的记者中随机抽取3人成立一个小组,则小组中既有男又有女的概率是多少?
(III)若从14名女记者中随机抽取2人担任翻译工作,记会俄语的人数为,求的期望.
当前题号:10 | 题型:解答题 | 难度:0.99