- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员
一年来的工作业绩分数的茎叶图如图所示:

(1)根据职员
的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;
(2)若记职员
的工作业绩的月平均数为
.
①已知该公司还有6位职员的业绩在100以上,分别是
,
,
,
,
,
,在这6人的业绩里随机抽取2个数据,求恰有1个数据满足
(其中
)的概率;
②由于职员
的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了9张卡片,其中有1张卡片上标注奖金为6千元,4张卡片的奖金为4千元,另外4张的奖金为2千元.规则是:获奖职员需要从9张卡片中随机抽出3张,这3张卡片上的金额数之和就是该职员所得奖金.记职员
获得的奖金为
(千元),求
的分布列和期望.


(1)根据职员

(2)若记职员


①已知该公司还有6位职员的业绩在100以上,分别是








②由于职员




某饼屋进行为期
天的五周年店庆活动,现策划两项有奖促销活动,活动一:店庆期间每位顾客一次性消费满
元,可得
元代金券一张;活动二:活动期间每位顾客每天有一次机会获得一个一元或两元红包.根据前一年该店的销售情况,统计了
位顾客一次性消费的金额数(元),频数分布表如下图所示:
以这
位顾客一次消费金额数的频率分布代替每位顾客一次消费金额数的概率分布.
(1)预计该店每天的客流量为
人次,求这次店庆期间,商家每天送出代金券金额数的期望;
(2)假设顾客获得一元或两元红包的可能性相等,商家在店庆活动结束后会公布幸运数字,连续
天参加返红包的顾客,如果红包金额总数与幸运数字一致,则可再获得
元的“店庆幸运红包”一个.若公布的幸运数字是“
”,求店庆期间一位连续
天消费的顾客获得红包金额总数的期望.




一次性消费金额数 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
以这

(1)预计该店每天的客流量为

(2)假设顾客获得一元或两元红包的可能性相等,商家在店庆活动结束后会公布幸运数字,连续




某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次,统计数据如下表所示:
(1)根据散点图判断,在推广期内,扫码支付的人
次关于活动推出天数
的回归方程适合用
来表示,求出该回归方程,并预测活动推出第
天使用扫码支付的人次;
(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受
折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受
折优惠的概率为
,享受
折优惠的概率为
,享受
折优惠的概率为
.现有一名顾客购买了
元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?
参考数据:设
,
,
,
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据散点图判断,在推广期内,扫码支付的人




(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
支付方式 | 现金 | 会员卡 | 扫码 |
比例 | ![]() | ![]() | ![]() |
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受








参考数据:设




参考公式:对于一组数据






某校高三实验班的60名学生期中考试的语文、数学成绩都在
内,其中语文成绩分组区间是:
,
,
,
,
.其成绩的频率分布直方图如图所示,这60名学生语文成绩某些分数段的人数
与数学成绩相应分数段的人数
之比如下表所示:

(1)求图中
的值及数学成绩在
的人数;
(2)语文成绩在
的3名学生均是女生,数学成绩在
的4名学生均是男生,现从这7名学生中随机选取4名学生,事件
为:“其中男生人数不少于女生人数”,求事件
发生的概率;
(3)若从数学成绩在
的学生中随机选取2名学生,且这2名学生中数学成绩在
的人数为
,求
的分布列和数学期望
.








分组区间 | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | | ![]() |
语文人数![]() | | 24 | | | 3 |
数学人数![]() | | 12 | | | 4 |

(1)求图中


(2)语文成绩在




(3)若从数学成绩在





高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:





.其中a,b,c成等差数列且
.物理成绩统计如表.(说明:数学满分150分,物理满分100分)

(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.









分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | 9 | 20 | 10 | 5 |
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按
/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
该公司注册的会员中没有消费超过
次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
假设汽车美容一次,公司成本为
元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为
元,求
的分布列和数学期望
.

消费次第 | 第![]() | 第![]() | 第![]() | 第![]() | ![]() ![]() |
收费比率 | ![]() | ![]() | ![]() | ![]() | ![]() |
该公司注册的会员中没有消费超过

消费次数 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
假设汽车美容一次,公司成本为

(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为



某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为
.
(1)问该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于
?
(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.

(1)问该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于

(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.
农机公司出售收割机,一台收割机的使用寿命为五年,在农机公司购买收割机时可以一次性额外订购买若干次维修服务,费用为每次100元,每次维修时公司维修人员均上门服务,实际上门服务时还需支付维修人员的餐饮费50元/次;若实际维修次数少于购买的维修次数,则未提供服务的订购费用退还50%;如果维修次数超过了购买的次数,农机公司不再提供服务,收割机的维修只能到私人维修店,每次维修费用为400元,无须支付餐饮费;--位农机手在购买收割机时,需决策一次性购买多少次维修服务.
为此,他拟范收集、整理出一台收割机在五年使用期内维修次数及相应的频率如下表:

(1)如果农机手在购买收割机时购买了6次维修,在使用期内实际维修的次数为5次,这位农机手的花费总费用是多少?如果实际维修的次数是8次,农机手的花费总费用又是多少?
(2)农机手购买了一台收制机,试在购买维修次数为6次和7次的两个数据中,根据使用期内维修时花费的总费用期望值,帮助农机手进行决策.
为此,他拟范收集、整理出一台收割机在五年使用期内维修次数及相应的频率如下表:

(1)如果农机手在购买收割机时购买了6次维修,在使用期内实际维修的次数为5次,这位农机手的花费总费用是多少?如果实际维修的次数是8次,农机手的花费总费用又是多少?
(2)农机手购买了一台收制机,试在购买维修次数为6次和7次的两个数据中,根据使用期内维修时花费的总费用期望值,帮助农机手进行决策.
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.

(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.