- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进
枝玫瑰花,
表示当天的利润(单位:元),求
的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.


(1)若花店一天购进




(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进



(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果前一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为
,
,
,假设
,
,
互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)假定
,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的数学期望达到最小.






(1)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)假定

某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为
,当
时,产品为一级品;当
时,产品为二级品;当
时,产品为三级品.现用两种新配方(分别称为
配方和
配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表
配方的频数分布表
(1)从
配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;
(2)若这种新产品的利润率
与质量指标
满足如下条件:
,其中
,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?







指标值分组 | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 30 | 40 | 20 |

指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 10 | 15 | 30 | 40 |
(1)从

(2)若这种新产品的利润率




某书店今年5月上架10种新书,且它们的首月销量(单位:册)情况为:100,50,100,150,150,100,150,50,100,100,频率为概率,解答以下问题:
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?
据长期统计分析,某货物每天的需求量
在17与26之间,日需求量
(件)的频率
分布如下表所示:
已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.
(1)设每天的进货量为
,视日需求量
的频率为概率
,求在每天进货量为
的条件下,日销售量
的期望值
(用
表示);
(2)在(1)的条件下,写出
和
的关系式,并判断
为何值时,日利润的均值最大?



需求量![]() | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
频率![]() | 0.12 | 0.18 | 0.23 | 0.13 | 0.10 | 0.08 | 0.05 | 0.04 | 0.04 | 0.03 |
已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.
(1)设每天的进货量为







(2)在(1)的条件下,写出



某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案①:将每个人的血分别化验,这时需要验960次.
方案②:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血就只需检验一次(这时认为每个人的血化验一次);否则,若呈阳性,则需对这
个人的血样再分别进行一次化验.这样,该组
个人的血总共需要化验
次.
假设此次普查中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案②中,某组
个人中每个人的血化验次数为
,求
的分布列;
(2)设
.试比较方案②中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).
方案①:将每个人的血分别化验,这时需要验960次.
方案②:按






假设此次普查中每个人的血样化验呈阳性的概率为

(1)设方案②中,某组



(2)设


已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,24.现采用分层抽样的方法从中抽取7人,进行睡眠质量的调查.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用
表示抽取的3人中睡眠充足的学生人数,求随机变量
的分布列与数学期望.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用


一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是
.
(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).

(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).
某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在
,按照区间
,
,
进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.

(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;
(2)从乙班
分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自
发言的人数为随机变量
,求
的分布列和期望.附:
,





(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;
| 甲班 | 乙班 | 总计 |
大于等于80分的人数 | | | |
小于80分的人数 | | | |
总计 | | | |
(2)从乙班





![]() | 0.10 | 0.05 | 0.025 |
![]() | 2.706 | 3.841 | 5.024 |