某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进枝玫瑰花,表示当天的利润(单位:元),求的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果前一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为,假设互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的数学期望达到最小.
当前题号:2 | 题型:解答题 | 难度:0.99
若随机变量,随机变量,若,则的值为_______.
当前题号:3 | 题型:填空题 | 难度:0.99
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一级品;当时,产品为二级品;当时,产品为三级品.现用两种新配方(分别称为配方和配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表
指标值分组




频数
10
30
40
20
 
配方的频数分布表
指标值分组





频数
5
10
15
30
40
 
(1)从配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;
(2)若这种新产品的利润率与质量指标满足如下条件:,其中,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?
当前题号:4 | 题型:解答题 | 难度:0.99
某书店今年5月上架10种新书,且它们的首月销量(单位:册)情况为:100,50,100,150,150,100,150,50,100,100,频率为概率,解答以下问题:
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?
当前题号:5 | 题型:解答题 | 难度:0.99
据长期统计分析,某货物每天的需求量在17与26之间,日需求量(件)的频率分布如下表所示:
需求量
17
18
19
20
21
22
23
24
25
26
频率
0.12
0.18
0.23
0.13
0.10
0.08
0.05
0.04
0.04
0.03
 
已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.
(1)设每天的进货量为,视日需求量的频率为概率,求在每天进货量为的条件下,日销售量的期望值(用表示);
(2)在(1)的条件下,写出的关系式,并判断为何值时,日利润的均值最大?
当前题号:6 | 题型:解答题 | 难度:0.99
某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案①:将每个人的血分别化验,这时需要验960次.
方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血就只需检验一次(这时认为每个人的血化验一次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验.这样,该组个人的血总共需要化验次.
假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.
(1)设方案②中,某组个人中每个人的血化验次数为,求的分布列;
(2)设.试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).
当前题号:7 | 题型:解答题 | 难度:0.99
已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,24.现采用分层抽样的方法从中抽取7人,进行睡眠质量的调查.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用表示抽取的3人中睡眠充足的学生人数,求随机变量的分布列与数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).
当前题号:9 | 题型:解答题 | 难度:0.99
某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.

(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;
 
甲班
乙班
总计
大于等于80分的人数
 
 
 
小于80分的人数
 
 
 
总计
 
 
 
 
(2)从乙班分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.附:

0.10
0.05
0.025

2.706
3.841
5.024
 
当前题号:10 | 题型:解答题 | 难度:0.99