- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
新中国昂首阔步地走进2019年,迎来了她70岁华诞.某平台组织了“伟大的复兴之路一新中国70周年知识问答”活动,规则如下:共有30道单选题,每题4个选项中只有一个正确,每答对一题获得5颗红星,每答错一题反扣2颗红星;若放弃此题,则红星数无变化.答题所获得的红星可用来兑换神秘礼品,红星数越多奖品等级越高.小强参加该活动,其中有些题目会做,有些题目可以排除若干错误选项,其余的题目则完全不会.
(1)请问:对于完全不会的题目,小强应该随机从4个选项中选一个作答,还是选择放弃?(利用统计知识说明理由)
(2)若小强有12道题目会做,剩下的题目中,可以排除一个错误选项、可以排除两个错误选项和完全不会的题目的数量比是
.请问:小强在本次活动中可以获得最多红星数的期望是多少?
(1)请问:对于完全不会的题目,小强应该随机从4个选项中选一个作答,还是选择放弃?(利用统计知识说明理由)
(2)若小强有12道题目会做,剩下的题目中,可以排除一个错误选项、可以排除两个错误选项和完全不会的题目的数量比是

重庆市的新高考模式为“
”,其中“3”是指语文、数学、外语三门必步科目:“1”是指物理、历史两门科目必选且只选一门;“2”是指在政治、地理、化学、生物四科中必须任选两门,这样学生的选科就可以分为两类:物理类与历史类,比如物理类有:物理+化学+生物,物理+化学+地理,物理+化学+政治.物理+政治+地理,物理+政治+生物,物理+生物+地理.重庆某中学高一学生共1200人,其中男生650人,女生550人,为了适应新高考,该校高一的学生在3月份进行了“
”的选科,选科情况部分数据如下表所示:(单位:人)
(1)请将题中表格补充完整,并判断能否有99%把握认为“是否选择物理类与性别有关”?
(2)已知高一9班和10班选科结果都只有四种组合:物理+化学+生物,物理+化学+地理,政治+历史+地理,政治+历史+生物.现用数字1,2,3,4依次代表这四种组合,两个班的选科数据如下表所示(单位:人).
现分别从两个班各选一人,记他们的选科结果分别为
和
,令
,用频率代表概率,求随机变量
的分布列和期望.(参考数据:
,
,
)
附:
;


性别 | 物理类 | 历史类 | 合计 |
男生 | 590 | | |
女生 | | 240 | |
合计 | 900 | | |
(1)请将题中表格补充完整,并判断能否有99%把握认为“是否选择物理类与性别有关”?
(2)已知高一9班和10班选科结果都只有四种组合:物理+化学+生物,物理+化学+地理,政治+历史+地理,政治+历史+生物.现用数字1,2,3,4依次代表这四种组合,两个班的选科数据如下表所示(单位:人).
| 理化生 | 理化地 | 政史地 | 政史生 | 班级总人数 |
9班 | 18 | 18 | 12 | 12 | 60 |
10班 | 24 | 12 | 18 | 6 | 60 |
现分别从两个班各选一人,记他们的选科结果分别为







附:

![]() | 0.050 | 0.025 | 0.010 | 0.005 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 |
某工厂生产某种产品,为了控制质量,质量控制工程师要在产品出厂前对产品进行检验.现有
(
且
)份产品,有以下两种检验方式:(1)逐份检验,则需要检验
次;(2)混合检验,将这
份产品混合在一起作为一组来检验.若检测通过,则这
份产品全部为正品,因而这
份产品只要检验一次就够了;若检测不通过,为了明确这
份产品究竟哪几份是次品,就要对这
份产品逐份检验,此时这
份产品的检验次数总共为
次.假设在接受检验的样本中,每份样本的检验结果是正品还是次品都是独立的,且每份样本是次品的概率为
.
(1)如果
,采用逐份检验方式进行检验,求检测结果恰有两份次品的概率;
(2)现对
份产品进行检验,运用统计概率相关知识回答:当
和
满足什么关系时,用混合检验方式进行检验可以减少检验次数?
(3)①当
(
且
)时,将这
份产品均分为两组,每组采用混合检验方式进行检验,求检验总次数
的数学期望;
②当
(
,且
,
)时,将这
份产品均分为
组,每组采用混合检验方式进行检验,写出检验总次数
的数学期望(不需证明).












(1)如果

(2)现对



(3)①当





②当







某工厂加工某种零件需要经过
,
,
三道工序,且每道工序的加工都相互独立,三道工序加工合格的概率分别为
,
,
.三道工序都合格的零件为一级品;恰有两道工序合格的零件为二级品;其它均为废品,且加工一个零件为二级品的概率为
.
(1)求
;
(2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为
元,求
的分布列及数学期望.







(1)求

(2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为


小明和父母都喜爱《中国好声音》这栏节目,
年
月
日晚在鸟巢进行中国好声音终极决赛,四强选手分别为李荣浩战队的邢晗铭,那英战队的斯丹曼簇,王力宏战队的李芷婷,庾澄庆战队的陈其楠,决赛后四位选手相应的名次为
、
、
、
,某网站为提升娱乐性,邀请网友在比赛结束前对选手名次进行预测.现用
、
、
、
表示某网友对实际名次为
、
、
、
的四位选手名次做出的一种等可能的预测排列,
是该网友预测的名次与真实名次的偏离程度的一种描述.
(1)求
的分布列及数学期望;
(2)按(1)中的结果,若小明家三人的排序号与真实名次的偏离程度都是
,计算出现这种情况的概率(假定小明家每个人排序相互独立).
















(1)求

(2)按(1)中的结果,若小明家三人的排序号与真实名次的偏离程度都是

九龙坡区围绕大力发展高新技术产业、推进高质量城市管理、创造高品质人民生活,建设宜居、宜业、宜游的“三高九龙坡、三宜山水城”的总愿景,全面开启新时代的新梦想、新征程.热心网友“我是坡民”通过问卷,对近五年游客满意度排在前三名的区内景点进行了统计,结果如表一.根据此表,他又对游览过热门景点重庆动物园的100名游客进行满意度调查,给景点打分,满分为100分,得分超过90分的为“特别满意”,其余为“基本满意”,将受调查游客年龄为12岁及以下的人群称为儿童,得到
列联表,如表二:
表一:
表二:
(1)完成表二的列联表,并判断是否有99.9%的把握认为调查对象是否“特别满意”与是否是儿童有关;
(2)为安排节假日出行,“我是坡民”从表一的5个年份中随机选择2个年份,再从这2个年份排名前三的景点中任意选择1个景点,记选择出的景点中“重庆动物园”出现的次数为
,求
的分布列及数学期望
.
参考公式
.
参考数据:
,
,
,
.

表一:
年份景点排名 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
1 | 重庆动物园 | 重庆动物园 | 龙门阵景区 | 彩云湖 | 彩云湖 |
2 | 华岩景区 | 华岩景区 | 重庆动物园龙 | 龙门阵景区 | 黄桷坪涂鸦街 |
3 | 巴国城 | 海兰云天 | 黄桷坪涂鸦街 | 华岩景区 | 重庆动物园 |
表二:
| 特别满意 | 基本满意 | 合计 |
儿童 | 40 | | |
非儿童 | | 30 | |
合计 | 60 | | 100 |
(1)完成表二的列联表,并判断是否有99.9%的把握认为调查对象是否“特别满意”与是否是儿童有关;
(2)为安排节假日出行,“我是坡民”从表一的5个年份中随机选择2个年份,再从这2个年份排名前三的景点中任意选择1个景点,记选择出的景点中“重庆动物园”出现的次数为



参考公式

参考数据:




某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除
收费10元之外,超过
的部分,每超出
(不足
,按
计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如表:
公司对近60天,每天揽件数量统计如表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?







包裹重量(单位:kg) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记
为参加交流会的5人中喜欢古典文学的人数,求
的分布列及数学期望
.
附:
,其中
.
参考数据:
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记



附:


参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害.每只红铃虫的平均产卵数
和平均温度
有关.现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
表中
,

(1)根据散点图判断,
与
(其中
为自然对数的底数)哪一个更适宜作为平均产卵数
关于平均温度
的回归方程类型?(给出判断即可不必说明理由)并由判断结果及表中数据,求出
关于
的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为
.
(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为
,求
的最大值,并求出相应的概率
.
(ⅱ)当
取最大值时,记该地今后5年中,需要人工防治的次数为
,求
的数学期望和方差.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为:
,
.


平均温度![]() | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
平均产卵数![]() | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
![]() | ![]() | ![]() | ![]() | ![]() |
27.429 | 81.286 | 3.612 | 40.182 | 147.714 |
表中



(1)根据散点图判断,







(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为

(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为



(ⅱ)当



附:对于一组数据



