为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划“生产、运输、销售”一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且).若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x的最小值是________.
前8小时内销售量
15
16
17
18
19
20
21
频数
10
x
16
16
15
13
y
 
当前题号:1 | 题型:填空题 | 难度:0.99
在一次购物抽奖活动中,已知某10张奖券中有6张有奖,其余4张没有奖,且有奖的6张奖券每张均可获得价值10元的奖品.某顾客从此10张奖券中任意抽取3张.
(1)求该顾客中奖的概率;
(2)若约定抽取的3张奖券都有奖时,还要另奖价值6元的奖品,求该顾客获得的奖品总价值(元)的分布列和均值.
当前题号:2 | 题型:解答题 | 难度:0.99
批量较大的一批产品中有的优等品,现进行重复抽样检查,共取3个样品,以表示这3个样品中优等品的个数.
(1)求取出的3个样品中有优等品的概率;
(2)求随机变量的概率分布及数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 (分)是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
时间(分)




频数




 
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某种填数字彩票,购票者花2元买一张小卡片,在卡片上填10以内(0,1,2,…,9)的三个数字(允许重复).如果依次填写的三个数字与开奖的三个有序的数字分别对应相等,得奖金1000元.只要有一个数字不符(大小或次序),无奖金.则购买一张彩票的期望收益是______________元.
当前题号:5 | 题型:填空题 | 难度:0.99
袋中装有只大小相同的球,编号分别为,现从该袋中随机地取出只,被取出的球中最大的号码为,则________.
当前题号:6 | 题型:填空题 | 难度:0.99
袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以表示取到球中的最大号码,则的数学期望是______.
当前题号:7 | 题型:填空题 | 难度:0.99
(理)假设某10张奖券中有一等奖1张,奖品价值100元;有二等奖3张,每份奖品价值50元;其余6张没有奖.现从这10张奖券中任意抽取2张,获得奖品的总价值不少于其数学期望的概率为_________.
当前题号:8 | 题型:填空题 | 难度:0.99
(理)袋中装有5个同样大小的球,编号为1,2,3,4,5. 现从该袋内随机取出3个球,记被取出的球的最大号码数为x,则Ex等于(   )
A.4B.4.5C.4.75D.5
当前题号:9 | 题型:单选题 | 难度:0.99
某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有两个题目,该学生答对两题的概率分别为,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).
(1)求该学生被公司聘用的概率;
(2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99