- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划“生产、运输、销售”一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:
,且
).若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x的最小值是________.


前8小时内销售量 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | x | 16 | 16 | 15 | 13 | y |
在一次购物抽奖活动中,已知某10张奖券中有6张有奖,其余4张没有奖,且有奖的6张奖券每张均可获得价值10元的奖品.某顾客从此10张奖券中任意抽取3张.
(1)求该顾客中奖的概率;
(2)若约定抽取的3张奖券都有奖时,还要另奖价值6元的奖品,求该顾客获得的奖品总价值
(元)的分布列和均值.
(1)求该顾客中奖的概率;
(2)若约定抽取的3张奖券都有奖时,还要另奖价值6元的奖品,求该顾客获得的奖品总价值

批量较大的一批产品中有
的优等品,现进行重复抽样检查,共取3个样品,以
表示这3个样品中优等品的个数.
(1)求取出的3个样品中有优等品的概率;
(2)求随机变量
的概率分布及数学期望
.


(1)求取出的3个样品中有优等品的概率;
(2)求随机变量


为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过
分时,按
元/分计费;超过
分时,超出部分按
元/分计费.已知王先生家离上班地点
公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间
(分)是一个随机变量.现统计了
次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为
分.(1)写出王先生一次租车费用
(元)与用车时间
(分)的函数关系式;(2)若王先生一次开车时间不超过
分为“路段畅通”,设
表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求
的分布列和期望.







时间![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() |
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为






某种填数字彩票,购票者花2元买一张小卡片,在卡片上填10以内(0,1,2,…,9)的三个数字(允许重复).如果依次填写的三个数字与开奖的三个有序的数字分别对应相等,得奖金1000元.只要有一个数字不符(大小或次序),无奖金.则购买一张彩票的期望收益是______________元.
(理)假设某10张奖券中有一等奖1张,奖品价值100元;有二等奖3张,每份奖品价值50元;其余6张没有奖.现从这10张奖券中任意抽取2张,获得奖品的总价值
不少于其数学期望
的概率为_________.


(理)袋中装有5个同样大小的球,编号为1,2,3,4,5. 现从该袋内随机取出3个球,记被取出的球的最大号码数为x,则Ex等于( )
A.4 | B.4.5 | C.4.75 | D.5 |
某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有
、
两个题目,该学生答对
、
两题的概率分别为
、
,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为
,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).
(1)求该学生被公司聘用的概率;
(2)设该学生应聘结束后答对的题目或问题的总个数为
,求
的分布列和数学期望.







(1)求该学生被公司聘用的概率;
(2)设该学生应聘结束后答对的题目或问题的总个数为

