题库 高中数学

题干

某工厂生产某种产品,为了控制质量,质量控制工程师要在产品出厂前对产品进行检验.现有)份产品,有以下两种检验方式:(1)逐份检验,则需要检验次;(2)混合检验,将这份产品混合在一起作为一组来检验.若检测通过,则这份产品全部为正品,因而这份产品只要检验一次就够了;若检测不通过,为了明确这份产品究竟哪几份是次品,就要对这份产品逐份检验,此时这份产品的检验次数总共为次.假设在接受检验的样本中,每份样本的检验结果是正品还是次品都是独立的,且每份样本是次品的概率为
(1)如果,采用逐份检验方式进行检验,求检测结果恰有两份次品的概率;
(2)现对份产品进行检验,运用统计概率相关知识回答:当满足什么关系时,用混合检验方式进行检验可以减少检验次数?
(3)①当)时,将这份产品均分为两组,每组采用混合检验方式进行检验,求检验总次数的数学期望;
②当,且)时,将这份产品均分为组,每组采用混合检验方式进行检验,写出检验总次数的数学期望(不需证明).
上一题 下一题 0.99难度 解答题 更新时间:2020-02-21 01:41:18

答案(点此获取答案解析)

同类题1

为方便市民出行,倡导低碳出行.某市公交公司推出利用支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,在推广期内采用随机优惠鼓励市民扫码支付乘车.该公司某线路公交车队统计了活动推广期第一周内使用扫码支付的情况,其中(单位:天)表示活动推出的天次,(单位:十人次)表示当天使用扫码支付的人次,整理后得到如图所示的统计表1和散点图.
表1:
x
第1天
第2天
第3天
第4天
第5天
第6天
第7天
y
7
12
20
33
54
90
148
 

(1)由散点图分析后,可用作为该线路公交车在活动推广期使用扫码支付的人次关于活动推出天次的回归方程,根据表2的数据,求此回归方程,并预报第8天使用扫码支付的人次(精确到整数).
表2:
 
 
 
 


4
52
3.5
140
2069
112
 
表中.
(2)推广期结束后,该车队对此期间乘客的支付情况进行统计,结果如表3.
表3:
支付方式
现金
乘车卡
扫码
频率
10%
60%
30%
优惠方式
无优惠
按7折支付
随机优惠(见下面统计结果)
 
统计结果显示,扫码支付中享受5折支付的频率为,享受7折支付的频率为,享受9折支付的频率为.已知该线路公交车票价为1元,将上述频率作为相应事件发生的概率,记随机变量为在活动期间该线路公交车搭载乘客一次的收入(单位:元),求的分布列和期望.
参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为参考数据:.