中国乒乓球队为了备战2019直通布达佩斯世乒赛,在深圳集训并进行队内选拔.选手三位选手分别进行一场对抗赛,按以往多次比赛的统计,选手获胜的概率分别为,且各场比赛互不影响.
(1)若选手至少获胜两场的概率大于,则该选手入选世乒赛最终名单,否则不予入选,问选手是否会入选;
(2)求选手获胜场数的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的42%来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷
 
 
造林方式
地区
造林总面积
 
人工造林
 
飞播造林
 
新封山育林
 
退化林修复
 
人工更新
内蒙
618484
311052
74094
136006
90382
6950
河北
583361
345625
33333
135107
65653
3643
河南
149002
97647
13429
22417
15376
133
重庆
226333
100600
 
62400
63333
 
陕西
297642
184108
33602
63865
16067
 
甘肃
325580
260144
 
57438
7998
 
新疆
263903
118105
6264
126647
10796
2091
青海
178414
16051
 
159734
2629
 
宁夏
91531
58960
 
22938
8298
1335
北京
19064
10012
 
4000
3999
1053
 
(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;
(2)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过50%的概率是多少?
(3)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
2019年1月4日,据“央视财经”微信公众号消息,点外卖已成为众多消费者一大常规的就餐形式,外卖员也成为了一种职业.为调查某外卖平台外卖员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计得如下频率分布直方图:

将上述调查所得到的频率视为概率.
(1)求的值,并估计利用该外卖平台点外卖用户的平均送餐距离;
(2)若该外卖平台给外卖员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份5元,超过4千米为远距离,每份9元.
(i)记为外卖员送一份外卖的收入(单位:元),求的分布列和数学期望;
(ii)若外卖员一天的收入不低于150元,试利用上述数据估计该外卖员一天的送餐距离至少为多少千米?
当前题号:3 | 题型:解答题 | 难度:0.99
为了预防春季流感,市防疫部门提供了编号为的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接种疫苗.
(1)求三人注射的疫苗编号互不相同的概率;
(2)设三人中选择的疫苗编号最大数为,求的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某合资企业招聘大学生时加试英语听力,待测试的小组中有男、女生共10人(其中女生人数多于男生人数),若从中随机选2人,其中恰为一男一女的概率为.
(Ⅰ)求该小组中女生的人数;
(Ⅱ)若该小组中每个女生通过测试的概率均为,每个男生通过测试的概率均为.现对该小组中女生甲、女生乙和男生丙、丁4人进行测试.记这4人中通过测试的人数为随机变量X,求X的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,亚洲热带地区广泛栽培.槟榔是重要的中药材,南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班的学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名学生进行调查,经他们平均每周咀嚼槟榔的颗数作为样本,绘制成如图所示的茎叶图(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班的学生平均每周咀嚼槟榔的颗数较多?
(2)在被抽取的10名学生中,从平均每周咀嚼槟榔的颗数不低于20颗的学生中随机抽取3名学生,求抽到班学生人数的分布列和数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某超市计划销售某种食品,现邀请甲、乙两个商家进场试销10天.两个商家提供的返利方案如下:甲商家每天固定返利60元,且每卖出一件食品商家再返利3元;乙商家无固定返利,卖出30件以内(含30件)的食品,每件食品商家返利5元,超出30件的部分每件返利8元.经统计,两个商家的试销情况茎叶图如下:

(1)现从甲商家试销的10天中抽取两天,求这两天的销售量都小于30的概率;
(2)若将频率视作概率,回答以下问题:
① 记商家乙的日返利额为X(单位:元),求X的分布列和数学期望;
② 超市拟在甲、乙两个商家中选择一家长期销售,如果仅从日平均返利额的角度考虑,请利用所学的统计学知识为超市作出选择,并说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2所.
(1)求甲、乙、丙三名同学都选高校的概率;
(2)若甲必选,记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为).

(1)补充完整列联表中的数据,并判断是否有的把握认为甲、乙两套治疗方案对患者白血病复发有影响;

(2)从复发的患者中抽取3人进行分析,求其中接受“乙方案”治疗的人数的数学期望.
附:










 
,其中
当前题号:10 | 题型:解答题 | 难度:0.99