某校高三有500名学生,在一次考试的英语成绩服从正态分布,数学成绩的频率分布直方图如下:

(Ⅰ)如果成绩大于135的为特别优秀,则本次考试英语、数学特别优秀的大约各多少人?
(Ⅱ)试问本次考试英语和数学的成绩哪个较高,并说明理由.
(Ⅲ)如果英语和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望。
参考公式及数据:
,则
.
当前题号:1 | 题型:解答题 | 难度:0.99
某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程的行业标准,予以地方财政补贴.其补贴标准如下表:

2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程,得到频率分布直方图如上图所示.用样本估计总体,频率估计概率,解决如下问题:

(1)求该市每辆纯电动汽车2017年地方财政补贴的均值;
(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:
辆数




天数
20
30
40
10
 
(同一组数据用该区间的中点值作代表)

2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台; 交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.

该企业现有两种购置方案:

方案一:购买100台直流充电桩和900台交流充电桩;
方案二:购买200台直流充电桩和400台交流充电桩.

假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润日收入日维护费用).

当前题号:2 | 题型:解答题 | 难度:0.99
某学生社团对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排进行分层抽样,并完成一项试验,试验方法是:使两组学生记忆40个无意义音节(如xiq,geh),均要求刚能全部记清就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点不含右端点).

(1)估计1000名被调查的学生中识记停止8小时后40个音节的保持率大于或等于60%的人数;
(2)从乙组准确回忆个数在范围内的学生中随机选3人,记:能准确回忆20个以上(含20)的人数为随机变量X,求X的分布列及数学期望;
(3)从本次试验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);
(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;
②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.
附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为
②若,则
当前题号:4 | 题型:解答题 | 难度:0.99
市政府为了促进低碳环保的出行方式,从全市在册的50000辆电动车中随机抽取100辆,委托专业机构免费为它们进行电池性能检测.电池性能分为需要更换、尚能使用、较好、良好四个等级,并分成电动自行车和电动汽车两个群体分别进行统计,样本分布如下图.

(1)从电池性能较好的电动车中,采用分层抽样的方法随机抽取了9辆,求再从这9辆电动车中随机抽取2辆,至少有1辆为电动汽车的概率;
(2)为提高市民对电动车的使用热情,市政府准备为电动车车主一次性发放补助,标准如下:
①电动自行车每辆补助300元;
②电动汽车每辆补助500元;
③对电池需要更换的电动车每辆额外补助400元.
利用样本估计总体,试估计市政府执行此方案的预算(单位:万元).
当前题号:5 | 题型:解答题 | 难度:0.99
某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:

1
2
3
4
5
6
7

5
8
8
10
14
15
17
 
(1)经过进一步统计分析,发现具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.
参考公式:
当前题号:6 | 题型:解答题 | 难度:0.99
高新区某高中德育处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制)的茎叶图如下:

(1)写出该样本的中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;
(2)从所抽取的70分以上的学生中再随机选取4人,记表示测试成绩在80分以上的人数,求的分布列和数学期望
当前题号:7 | 题型:解答题 | 难度:0.99
甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论;
(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求选出成绩“良好”的个数的分布列和数学期望.
(注:方差,其中的平均数)
当前题号:8 | 题型:解答题 | 难度:0.99
从某校高中男生中随机选取100名学生,将他们的体重(单位:)数据绘制成频率分布直方图,如图所示.

(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取3人,记体重在内的人数为,求其分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某体育公司对最近6个月内的市场占有率进行了统计,结果如表:

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;
(2)公司决定再采购两款车扩大市场,两款车各100辆的资料如表:

平均每辆车每年可为公司带来收入500元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命都是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的期望值作为决策依据,应选择采购哪款车型?
参考数据:
参考公式:相关系数
回归直线方程,其中
当前题号:10 | 题型:解答题 | 难度:0.99