- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站
年
月促销费用
(万元)和产品销量
(万件)的具体数据.
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
(系数精确到
);
(2)已知
月份该购物网站为庆祝成立
周年,特定制奖励制度:用
(单位:件)表示日销量,若
,则每位员工每日奖励
元;若
,每位员工每日奖励
元;若
,则每位员工每日奖励
元.现已知该网站
月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)
参考数据:
,
,其中
分别为第
个月的促销费用和产品销量,
.
参考公式:①对于一组数据
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
②若随机变量
服从正态分布
,则
,
.




月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用![]() | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量![]() | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知






(2)已知












参考数据:





参考公式:①对于一组数据




②若随机变量




某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只需要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为
、
、
三类工种,从事这三类工种的人数分别为12000、6000、2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):
已知
、
、
三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此业务的过程中固定支出每年10万元.
(1)求保险公司在该业务所获利润的期望值;
(2)现有如下两个方案供企业选择:
方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给出意外的职工,企业开展这项工作的固定支出为每年12万元;
方案2:企业与保险公司合作,企业负责职工保费的
,职工个人负责
,出险后赔偿金由保险公司赔付,企业无额外专项开支.
根据企业成本差异给出选择合适方案的建议.



工种类别 | A | B | C |
赔付频率 | ![]() | ![]() | ![]() |
已知



(1)求保险公司在该业务所获利润的期望值;
(2)现有如下两个方案供企业选择:
方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给出意外的职工,企业开展这项工作的固定支出为每年12万元;
方案2:企业与保险公司合作,企业负责职工保费的


根据企业成本差异给出选择合适方案的建议.
某市疾控中心流感监测结果显示,自2019年1月起,该市流感活动一度d现上升趋势,尤其是3月以来,呈现快速增长态势,截止目前流感病毒活动度仍处于较高水平,为了预防感冒快速扩散,某校医务室采取积极方式,对感染者进行短暂隔离直到康复。假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定感染的同学,血液化验结果呈阳性即为感染,呈阴性即未被感染。下面是两种化验方法:方案甲:逐个化验,直到能确定感染同学为止;方案乙:先任取3个同学,将它们的血液混在一起化验,若结果呈阳性则表明感染同学为这3位中的1位,后再逐个化验,直到能确定感染同学为止;若结果呈阴性则在另外3位同学中逐个检测;
(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;
(2)
表示依方案甲所需化验次数,
表示依方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑那种化验方案最佳。
(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;
(2)


设袋子中装有
个红球,
个黄球,
个篮球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个篮球得3分.
(Ⅰ)当
,
,
时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量
为取出此2球所得分数之和,求
的分布列;
(Ⅱ)从该袋中任取(每球取到的机会均等)1个球,记随机变量
为取出此球所得分数.若
,
,求
.



(Ⅰ)当





(Ⅱ)从该袋中任取(每球取到的机会均等)1个球,记随机变量




某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求
,确定n的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在
与
之中选其一,应选用哪个?

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求

(3)以购买易损零件所需费用的期望值为决策依据,在


有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为
,求
的分布列;
(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由.
(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率.
甲公司 | 乙公司 | ||||||||
职位 | A | B | C | D | 职位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为


(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由.
(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率.
某大型商场去年国庆期间累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表:
由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过800元的概率;
(2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值500元、200元、100元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为
.若今年国庆期间该商场的购物单数量比去年同期增长5%,式预测商场今年国庆期间采办奖品的开销.
消费金额(单位:元) | (0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
购物单张数 | 25 | 25 | 30 | ? | ? |
由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过800元的概率;
(2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值500元、200元、100元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为

为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:
利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.
(Ⅰ)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;
(Ⅱ)从该公司本月卖出的销售单价为20万元的机器中随机选取
台,求这两台机器的利润率不同的概率;
(Ⅲ)假设每类机器利润率不变,销售一台第一类机器获利
万元,销售一台第二类机器获利
万元,…,销售一台第五类机器获利
,依据上表统计数据,随机销售一台机器获利的期望为
,设
,试判断
与
的大小.(结论不要求证明)
机器类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 |
销售总额(万元) | ![]() | ![]() | ![]() | ![]() | ![]() |
销售量(台) | ![]() | ![]() | ![]() | ![]() | ![]() |
利润率 | ![]() | ![]() | ![]() | ![]() | ![]() |
利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.
(Ⅰ)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;
(Ⅱ)从该公司本月卖出的销售单价为20万元的机器中随机选取

(Ⅲ)假设每类机器利润率不变,销售一台第一类机器获利






