- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有两种理财产品
和
,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
:
产品
:
注:
(1)若甲、乙两人分别选择了产品
投资,一年后他们中至少有一人获利的概率大于
,求实数
的取值范围;
(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.


产品

投资结果 | 获利![]() | 不赔不赚 | 亏损![]() |
概率 | ![]() | ![]() | ![]() |
产品

投资结果 | 获利![]() | 不赔不赚 | 亏损![]() |
概率 | ![]() | ![]() | ![]() |
注:

(1)若甲、乙两人分别选择了产品



(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.
一个不透明袋中放有大小、形状均相同的小球,其中红球
个、黑球
个,现随机等可能取出小球.当有放回依此取出两个小球时,记取出的红球数为
,则
______;若第一次取出一个小球后,放入一个红球和一个黑球,再第二次随机取出一个小球.记取出的红球总数为
,则
______.






2018年12月28日,成雅铁路开通运营,使川西多个市县进入动车时代,融入全国高铁网,这对推动沿线经济社会协调健康发展具有重要意义.在试运行期间,铁道部门计划在成都和雅安两城之间开通高速列车,假设每天7:00-8:00,8:00-9:00两个时间段内各发一趟列车由雅安到成都(两车发车情况互不影响),雅安发车时间及其概率如下表所示:
若小王、小李二人打算乘动车从雅安到成都游玩,假设他们到达雅安火车站候车的时间分别是周六7:00和7:20(只考虑候车时间,不考虑其它因素).
(1)求小王候车10分钟且小李候车30分钟的概率;
(2)设小李候车所需时间为随机变量
,求
的分布列和数学期望
.
| 第一趟列车 | 第二趟列车 | ||||
发车时间 | 7:10 | 7:30 | 7:50 | 8:10 | 8:30 | 8:50 |
概率 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 |
若小王、小李二人打算乘动车从雅安到成都游玩,假设他们到达雅安火车站候车的时间分别是周六7:00和7:20(只考虑候车时间,不考虑其它因素).
(1)求小王候车10分钟且小李候车30分钟的概率;
(2)设小李候车所需时间为随机变量



某日A,B两个沿海城市受台风袭击的概率相同,已知A市或B市至少有一个受台风袭击的概率为0.36,若用X表示这一天受台风袭击的城市个数,则E(X)=( )
A.0.1 | B.0.2 |
C.0.3 | D.0.4 |
为了研究学生的数学核心素养与抽象能力(指标
)、推理能力(指标
)、建模能力(指标
)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标
的值评定学生的数学核心素养,若
,则数学核心素养为一级;若
,则数学核心素养为二级;若
,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为
,求随机变量
的分布列及其数学期望.







学生编号 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为


五人进行过关游戏,每人随机出现左路和右路两种选择.若选择同一条路的人数超过2人,则他们每人得1分;若选择同一条路的人数小于3人,则他们每人得0分,记小强游戏得分为
,则
( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知表1和表2是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表
表2:某年2月部分日期的天安门广场升旗时刻表
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记
为这两人中观看升旗的时刻早于7:00的人数,求
的分布列和数学期望
.
(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为
).记表2中所有升旗时刻对应数据的方差为
,表1和表2中所有升旗时刻对应数据的方差为
,判断
与
的大小(只需写出结论)
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记



(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为





从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为
,则数学期望
( )


A.![]() | B.1 | C.![]() | D.2 |