有两种理财产品,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
投资结果
获利
不赔不赚
亏损
概率



 
产品
投资结果
获利
不赔不赚
亏损
概率



 
注:
(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;
(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.
当前题号:1 | 题型:解答题 | 难度:0.99
一个不透明袋中放有大小、形状均相同的小球,其中红球个、黑球个,现随机等可能取出小球.当有放回依此取出两个小球时,记取出的红球数为,则______;若第一次取出一个小球后,放入一个红球和一个黑球,再第二次随机取出一个小球.记取出的红球总数为,则______.
当前题号:2 | 题型:填空题 | 难度:0.99
,随机变量的分布列如表所示,则当内增大时,(   )

0
1
2




 
A.增大B.减小
C.先增大,后减小D.先减小,后增大
当前题号:3 | 题型:单选题 | 难度:0.99
2018年12月28日,成雅铁路开通运营,使川西多个市县进入动车时代,融入全国高铁网,这对推动沿线经济社会协调健康发展具有重要意义.在试运行期间,铁道部门计划在成都和雅安两城之间开通高速列车,假设每天7:00-8:00,8:00-9:00两个时间段内各发一趟列车由雅安到成都(两车发车情况互不影响),雅安发车时间及其概率如下表所示:
 
第一趟列车
第二趟列车
发车时间
7:10
7:30
7:50
8:10
8:30
8:50
概率
0.2
0.3
0.5
0.2
0.3
0.5
 
若小王、小李二人打算乘动车从雅安到成都游玩,假设他们到达雅安火车站候车的时间分别是周六7:00和7:20(只考虑候车时间,不考虑其它因素).
(1)求小王候车10分钟且小李候车30分钟的概率;
(2)设小李候车所需时间为随机变量,求的分布列和数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某日AB两个沿海城市受台风袭击的概率相同,已知A市或B市至少有一个受台风袭击的概率为0.36,若用X表示这一天受台风袭击的城市个数,则E(X)=(   )
A.0.1B.0.2
C.0.3D.0.4
当前题号:5 | 题型:单选题 | 难度:0.99
为了研究学生的数学核心素养与抽象能力(指标)、推理能力(指标)、建模能力(指标)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:
学生编号





















 
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为,求随机变量的分布列及其数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
五人进行过关游戏,每人随机出现左路和右路两种选择.若选择同一条路的人数超过2人,则他们每人得1分;若选择同一条路的人数小于3人,则他们每人得0分,记小强游戏得分为,则(  )
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
已知表1和表2是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表
日期
升旗时刻
日期
升旗时刻
日期
升旗时刻
日期
升旗时刻
1月1日
7:36
4月9日
5:46
7月9日
4:53
10月8日
6:17
1月21日
7:31
4月28日
5:19
7月27日
5:07
10月26日
6:36
2月10日
7:14
5月16日
4:59
8月14日
5:24
11月13日
6:56
3月2日
6:47
6月3日
4:47
9月2日
5:42
12月1日
7:16
3月22日
6:15
6月22日
4:46
9月20日
5:59
12月20日
7:31
 
表2:某年2月部分日期的天安门广场升旗时刻表
日期
升旗时刻
日期
升旗时刻
日期
升旗时刻
2月1日
7:23
2月11日
7:13
2月21日
6:59
2月3日
7:22
2月13日
7:11
2月23日
6:57
2月5日
7:20
2月15日
7:08
2月25日
6:55
2月7日
7:17
2月17日
7:05
2月27日
6:52
2月9日
7:15
2月19日
7:02
2月28日
6:49
 
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记为这两人中观看升旗的时刻早于7:00的人数,求的分布列和数学期望
(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断的大小(只需写出结论)
当前题号:8 | 题型:解答题 | 难度:0.99
从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为,则数学期望(   )
A.B.1C.D.2
当前题号:9 | 题型:单选题 | 难度:0.99
已知随机变量ξ的分布列如下,则E(ξ)的最大值是(   )
ξ
-1
0
a
P



 
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99