- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一口袋中装有大小相同的2个白球和4个黑球,每次从袋中任意摸出一个球,若采取不放回抽样方式,从中摸出两个球,则摸得白球的个数
的方差
__________.


在一次数学考试中,第22题和第23题为选做题,规定每位考生必须且只须在其中选做一题,现有甲、乙、丙、丁4名考生参加考试,其中甲、乙选做第22题的概率均为
,丙、丁选做第22题的概率均为
.
(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;
(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望.


(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;
(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望.
下表是某校高三一次月考5个班级的数学、物理的平均成绩:
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量
,
的线性回归方程
;
(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为
,求
的分布列和数学期望.
附:
,
班级 | 1 | 2 | 3 | 4 | 5 |
数学(![]() | 111 | 113 | 119 | 125 | 127 |
物理(![]() | 92 | 93 | 96 | 99 | 100 |
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量



(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为


附:


几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:

(1)求申通公司的快递员一日工资
(单位:元)与送件数
的函数关系;
(2)若将频率视为概率,回答下列问题:
①记圆通公司的“快递员”日工资为
(单位:元),求
的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

(1)求申通公司的快递员一日工资


(2)若将频率视为概率,回答下列问题:
①记圆通公司的“快递员”日工资为


②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.
某竞猜活动有54人参加.设计者给每位参与者1道填空题和3道选择题,答对一道填空题得2分,答对一道选择题得1分,答错得0分,若得分总数大于或等于4分可获得纪念品.假定每位参与者答对每道填空题的概率为
,答对每道选择题的概率为
,且每位参与者答题互不影响.设参与者中可获得纪念品的人数为
,则均值(数学期望)
( )




A.![]() | B.![]() | C.![]() | D.![]() |
某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和
及
,并通过比较
,
的大小,判断哪个模型拟合效果更好.
(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和




(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
某超市进行促销活动,规定消费者消费每满100元可抽奖一次,抽奖规则:从装有三种只有颜色不同的球的袋中随机摸出一球,记下颜色后放回,依颜色分为一、二、三等奖,一等奖奖金15元,二等奖奖金10元,三等奖奖金5元,活动以来,中奖结果统计如图所示:

消费者甲购买了238元的商品,准备参加抽奖,以频率作为概率,解答下列各题:
(1)求甲恰有一次获得一等奖的概率;
(2)求甲获得20元奖金的概率;
(3)记甲获得奖金金额为
,求
的数学期望
.

消费者甲购买了238元的商品,准备参加抽奖,以频率作为概率,解答下列各题:
(1)求甲恰有一次获得一等奖的概率;
(2)求甲获得20元奖金的概率;
(3)记甲获得奖金金额为


