- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)某校学生会进行了一次关于“消防安全”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,团委会对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调查结果统计如下表:
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.
(Ⅰ)求上表中的m,n值,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人知道灭火器使用方法的概率;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取2人参加消防知识讲座,记选中的4人中不知道灭火器使用方法的人数为
,求随机变量
的分布列和数学期望.
年龄(岁) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] |
频数 | m | n | 15 | 10 | 7 | 3 |
知道的人数 | 4 | 6 | 12 | 6 | 3 | 2 |
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.
(Ⅰ)求上表中的m,n值,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人知道灭火器使用方法的概率;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取2人参加消防知识讲座,记选中的4人中不知道灭火器使用方法的人数为


一个袋子中有7个除颜色外完全相同的小球,其中5个红色,2个黑色.从袋中随机地取出3个小球.其中取到黑球的个数为
,则
(结果用最简分数作答).


学生的学习能力参数
可有效衡量学生的综合能力,
越大,综合能力越强,为推动数学知识的发展,提高学生的综合能力.某校根据学生的学习能力参数
将参加数学竞赛小组的学生分成了如下三类:
某研究性学习小组,从该竞赛小组中按分层抽样的方法随机选取了
人,根据其学习能力参数
,作出了频率与频数的统计表:
(1)求
,
,
,
的值
(2)规定:学习能力参数
不少于70称为优秀.若从这
人中任选
人,记抽到到的优秀人数为随机变量
,求
的分布列和数学期望



学习能力参数![]() | 学习能力参数![]() | ||
![]() | ![]() | ![]() | |
学生人数(人) | 15 | 10 | ![]() |
某研究性学习小组,从该竞赛小组中按分层抽样的方法随机选取了


分组 | 频数(人) | 频率 |
![]() | 3 | |
![]() | ![]() | ![]() |
![]() | | ![]() |
合计 | ![]() | ![]() |
(1)求




(2)规定:学习能力参数





(本小题满分12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:

(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?
(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
①求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的分布列和数学期望.

(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?
(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
①求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的分布列和数学期望.
某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为
,得到乙、丙公司面试的概率均为
,且三个公司是否让其面试是相互独立的,记
该毕业生得到面试的公司个数,若
,则随机变量
的数学期望
__________.






某市举行的“国际马拉松赛”,举办单位在活动推介晚会上进行嘉宾现场抽奖活动,抽奖盒中装有6个大小相同的小球,分别印有“快乐马拉松”和“美丽绿城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球(取出后不再放回),若抽到的两个球都印有“快乐马拉松”标志即可获奖.并停止取球;否则继续抽取,第一次取球就抽中获一等奖,第二次取球抽中获二等奖,第三次取球抽中获三等奖,没有抽中不获奖.活动开始后,一位参赛者问:“盒中有几个印有‘快乐马拉松’的小球?”主持人说:“我只知道第一次从盒中同时抽两球,不都是‘美丽绿城行’标志的概率是
(1)求盒中印有“快乐马拉松”小球的个数;
(2)若用
表示这位参加者抽取的次数,求
的分布列及期望.
(1)求盒中印有“快乐马拉松”小球的个数;
(2)若用


京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄
服从正态分布
同时随机抽取
位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在
内),样本数据分别区间为
由此得到如图所示的频率分布直方图.

(Ⅰ) 若
求
的值;
(Ⅱ)现从样本年龄在
的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为
,且每个人回答正确与否相互之间没有影响,用
表示票友们赢得老年戏曲演唱机的台数,求
的分布列及数学期望.






(Ⅰ) 若


(Ⅱ)现从样本年龄在




甲、乙两工人在一天生产中加工出的废品数分别是两个随机变量
,其分布列分别为
若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是____________.

![]() | 0 | 1 | 2 | 3 |
![]() | 0.4 | 0.3 | 0.2 | 0.1 |
![]() | 0 | 1 | 2 |
![]() | 0.3 | 0.5 | 0.2 |
若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是____________.