- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2017年8月20日起,市交警支队全面启动路口秩序环境综合治理,重点整治机动车不礼让斑马线和行人的行为,经过一段时间的治理,从市交警队数据库中调取了20个路口近三个月的车辆违章数据,经统计得如图所示的频率分布直方图,统计数据中凡违章车次超过30次的设为“重点关注路口”.

(1)现从“重点关注路口”中随机抽取两个路口安排交警去执勤,求抽出来的路口的违章车次一个在
,一个在
中的概率;
(2)现从支队派遣5位交警,每人选择一个路口执勤,每个路口至多1人,违章车次在
的路口必须有交警去,违章车次在
的不需要交警过去,设去“重点关注路口”的交警人数为
,求
的分布列及数学期望.

(1)现从“重点关注路口”中随机抽取两个路口安排交警去执勤,求抽出来的路口的违章车次一个在


(2)现从支队派遣5位交警,每人选择一个路口执勤,每个路口至多1人,违章车次在




为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;
(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数
的分布列及其数学期望
;
(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件
,求事件
的概率.

(1)试用样品数据估计甲、乙两种产品的优等品率;
(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数


(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件


某商场经销某商品,顾客可以采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是
,经销
件该产品,若顾客采用一次性付款,商场获得利润
元;若顾客采用分期付款,商场获得利润
元.
(Ⅰ)求
位购买商品的顾客中至少有
位采用一次性付款的概率.
(Ⅱ)若
位顾客每人购买
件该商品,求商场获得利润不超过
元的概率.
(Ⅲ)若
位顾客每人购买
件该商品,设商场获得的利润为随机变量
,求
的分布列和数学期望.




(Ⅰ)求


(Ⅱ)若



(Ⅲ)若




从1,2,3,4,5,6,7,8,9这九个数字中任意取出三个不同的数字.
(Ⅰ)求取出的这三个数字中最大数字是8的概率;
(Ⅱ)记取出的这三个数字中奇数的个数为
,求随机变量
的分布列与数学期望.
(Ⅰ)求取出的这三个数字中最大数字是8的概率;
(Ⅱ)记取出的这三个数字中奇数的个数为


某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间
,需求量为100台;最低气温位于区间
,需求量为200台;最低气温位于区间
,需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:
以最低气温位于各区间的频率代替最低气温位于该区间的概率.
(1)求11月份这种电暖气每日需求量
(单位:台)的分布列;
(2)若公司销售部以每日销售利润
(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?



最低气温(℃) | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 11 | 25 | 36 | 16 | 2 |
以最低气温位于各区间的频率代替最低气温位于该区间的概率.
(1)求11月份这种电暖气每日需求量

(2)若公司销售部以每日销售利润

国庆期间,一位游客来到某旅游城市,这里有甲、乙、丙三个著名的旅游景点,若这位游客游览这三个景点的概率分别是
,且客人是否游览哪个景点互不影响,设
表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(Ⅰ)求
的分布列和数学期望;
(Ⅱ)记“
时,不等式
恒成立”为事件
,求事件
发生的概率.


(Ⅰ)求

(Ⅱ)记“




一个口袋里装有大小相同的6个小球,其中红色、黄色、绿色的球各2个,现从中任意取出3个小球,其中恰有2个小球同颜色的概率是_______.若取到红球得1分,取到黄球得2分,取到绿球得3分,记变量
为取出的三个小球得分之和,则
的期望为_____.


一家医药研究所,从中草药中提取并合成了甲、乙两种抗“
病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为
.现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”.
(1)求一个试用组为“甲类组”的概率;
(2)观察3个试用组,用
表示这3个试用组中“甲类组”的个数,求
的分布列和数学期望.


(1)求一个试用组为“甲类组”的概率;
(2)观察3个试用组,用


如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为
.

(1)求游戏结束时小华在第2个台阶的概率;
(2)求
的分布列和数学期望.


(1)求游戏结束时小华在第2个台阶的概率;
(2)求

随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表:

(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数
的分布列及其均值(即数学期望).
(注:
,其中
为样本容量)

(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数

(注:


