- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场为了了解顾客的购物信息,随机在商场收集了
位顾客购物的相关数据如下表:
统计结果显示
位顾客中购物款不低于
元的顾客占
,该商场每日大约有
名顾客,为了增加商场销售额度,对一次购物不低于
元的顾客发放纪念品.
(Ⅰ)试确定
,
的值,并估计每日应准备纪念品的数量;
(Ⅱ)为了迎接春节,商场进行让利活动,一次购物款
元及以上的一次返利
元;一次购物不超过
元的按购物款的百分比返利,具体见下表:
请问该商场日均大约让利多少元?

一次购物款(单位:元) | ![]() | ![]() | ![]() | ![]() | ![]() |
顾客人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
统计结果显示





(Ⅰ)试确定


(Ⅱ)为了迎接春节,商场进行让利活动,一次购物款



一次购物款(单位:元) | ![]() | ![]() | ![]() | ![]() |
返利百分比 | ![]() | ![]() | ![]() | ![]() |
请问该商场日均大约让利多少元?
当前,网购已成为现代大学生的时尚。某大学学生宿舍4人参加网购,约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.
(1)求这4个人中恰有1人去淘宝网购物的概率;
(2)用
分别表示这4个人中去淘宝网和京东商城购物的人数,记
,求随机变量
的分布列与数学期望
.
(1)求这4个人中恰有1人去淘宝网购物的概率;
(2)用




某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲这都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷份数情况如下表:
用分层抽样的方法从这一天的所有问卷中抽取
份进行统计,结果如下表:
(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出
人进行家访,求这
人中选择的是理综讲座的人数的分布列.
学科 | 语文 | 数学 | 英语 | 理综 | 文综 |
问卷份数 | ![]() | ![]() | ![]() | ![]() | ![]() |
用分层抽样的方法从这一天的所有问卷中抽取

| 满意 | 一般 | 不满意 |
语文 | ![]() | ![]() | ![]() |
数学 | ![]() | 1![]() | ![]() |
英语 | ![]() | ![]() | ![]() |
理综 | ![]() | ![]() | ![]() |
文综 | ![]() | ![]() | ![]() |
(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出


为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.
(Ⅰ)设
为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件
发生的概率.
(Ⅱ)设
为选出的4人中高级导游的人数,求随机变量
的分布列和数学期望.
(Ⅰ)设


(Ⅱ)设


为评估设备
生产某种零件的性能,从设备
生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
经计算,样本的平均值
,标准差
,以频率值作为概率的估计值.
(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为
,并根据以下不等式进行评判(
表示相应事件的概率);①
;
②
;③
.
评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备
的性能等级.
(2)将直径小于等于
或直径大于
的零件认为是次品.
(ⅰ)从设备
的生产流水线上随意抽取2件零件,计算其中次品个数
的数学期望
;
(ⅱ)从样本中随意抽取2件零件,计算其中次品个数
的数学期望
.


直径/![]() | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |


(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为



②


评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备

(2)将直径小于等于


(ⅰ)从设备



(ⅱ)从样本中随意抽取2件零件,计算其中次品个数

